A375297
Number of integer compositions of n matching both of the dashed patterns 23-1 and 1-32.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 21, 68, 199, 545, 1410, 3530, 8557, 20255, 46968, 107135, 240927, 535379, 1177435, 2566618, 5551456
Offset: 0
The a(0) = 0 through a(11) = 21 compositions:
. . . . . . . . . (12321) (1342) (1352)
(2431) (2531)
(12421) (11342)
(13231) (12431)
(112321) (12521)
(123211) (13241)
(13421)
(14231)
(23132)
(24311)
(112421)
(113231)
(122321)
(123212)
(123221)
(124211)
(132311)
(212321)
(1112321)
(1123211)
(1232111)
For leaders of identical runs we have
A332834.
These compositions are ranked by
A375407.
A106356 counts compositions by number of maximal anti-runs.
A335456 counts patterns matched by compositions.
Cf.
A000041,
A056823,
A188920,
A189076,
A238343,
A333213,
A335514,
A374631,
A374632,
A374635,
A374681.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], MatchQ[#,{_,y_,z_,_,x_,_}/;x_,x_,_,z_,y_,_}/;x
A376263
Number of strict integer compositions of n whose leaders of increasing runs are increasing.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
Offset: 0
The a(1) = 1 through a(9) = 11 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,3) (2,4) (2,5) (2,6) (2,7)
(1,2,3) (3,4) (3,5) (3,6)
(1,3,2) (1,2,4) (1,2,5) (4,5)
(1,4,2) (1,3,4) (1,2,6)
(1,4,3) (1,3,5)
(1,5,2) (1,5,3)
(1,6,2)
(2,3,4)
(2,4,3)
For less-greater or greater-less we have
A294617.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A000110,
A008289,
A056823,
A106356,
A188920,
A238343,
A261982,
A274174,
A333213,
A374634,
A374683,
A374698,
A374763.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#,Less]&]],{n,0,15}]
-
\\ here Q(n) gives n-th row of A008289.
Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)}
a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024
Comments