A375530
a(n) is the denominator of Sum_{k = 1..n} prime(k) / A375529(k).
Original entry on oeis.org
1, 3, 30, 4530, 143650830, 226991170700228730, 669824890486184912549321336826596430, 7627311526552103393330686732733999706332372434754669475019405844335259730
Offset: 0
The first few fractions Sum_{k = 1..n} prime(k) / A375529(k) are 0/1, 2/3, 29/30, 4529/4530, 143650829/143650830, 226991170700228729/226991170700228730, ...
-
a:= proc(n) option remember; `if`(n=0, 1,
ithprime(n)*a(n-1)^2+a(n-1))
end:
seq(a(n), n=0..7); # Alois P. Heinz, Oct 21 2024
Original entry on oeis.org
2, 2, 3, 4, 25, 201, 40201, 1212060151, 1305857607493406801, 1534737681943564047120326770001682121, 11777098761887521784975815904636471022877972047160405176265171997646882601
Offset: 0
a(7) = A375516(8) / A375516(7) = 11752718467440661200 / 9696481200 = 1212060151.
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> denom(s(n+1))/denom(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 19 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n-1] + 1/(n*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n-1])*n)];
a[n_] := Denominator[s[n+1]]/Denominator[s[n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 02 2025, after Alois P. Heinz *)
-
{ r = 1; for (n = 1, 11, a = floor(1/(r*n))+1; d = denominator(r); r -= 1/(n*a); print1 (denominator(r)/d", ");); }
-
from itertools import count, islice
from math import gcd
def A375791_gen(): # generator of terms
p, q = 0, 1
for k in count(1):
m = q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
yield k*m//r
A375791_list = list(islice(A375791_gen(),11)) # Chai Wah Wu, Aug 30 2024
A376050
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k-1)*a(k)) < 1.
Original entry on oeis.org
2, 1, 2, 3, 6, 172, 137534, 106557767317, 10018727448950607892211, 218107864753736742334588510315735629277159621, 43040465365773907074907163986022284668974202910116417170603263409796800986397420975160781
Offset: 1
- Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
A376053
Numerator of the sum S(n) defined in A376052.
Original entry on oeis.org
1, 8, 71, 248, 3043, 43024, 89051, 764441, 451021514, 25508567769, 411827311870583771, 525058386770138717020639964821, 528134692562568161116953143877712480332943632586669596859, 2267693117789905604207315326366543773113615946806750184592188584359364943382168221068055512231683584106110223751
Offset: 1
The initial values of S(n) are 1/3, 8/15, 71/105, 248/315, 3043/3465, 43024/45045, 89051/90090, ...
A376054
Denominator of sum S(n) defined in A376052.
Original entry on oeis.org
3, 15, 105, 315, 3465, 45045, 90090, 765765, 451035585, 25508568085, 411827311870584610, 525058386770138717020639964850, 528134692562568161116953143877712480332943632586669596900
Offset: 1
The initial values of S(n) are 1/3, 8/15, 71/105, 248/315, 3043/3465, 43024/45045, 89051/90090, ...
A376059
a(n) is the denominator of the sum S(n) defined in A376058.
Original entry on oeis.org
1, 2, 6, 78, 18330, 1679962830, 22578200883132834030, 6627077016548303724729207245056971365730, 922281145448518091883798423085535218757314338662318933097843039655721026758456630
Offset: 0
The first few values of S(n) are 0, 1/2, 5/6, 77/78, 18329/18330, 1679962829/1679962830, 22578200883132834029/22578200883132834030, ...
-
RecurrenceTable[{a[n+1] == Fibonacci[n+1]*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 8}] (* Amiram Eldar, Sep 15 2024 *)
A376184
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} is the sequence b(1)=5/4, b(2*i)=3/2, b(2*i+1)=6/5 (i>0).
Original entry on oeis.org
2, 5, 17, 341, 92753, 10753782821, 92515075960384748177, 10698799099944699918936107506299150093941, 91571441744782016867976366392607084634231243149599342901251284090792487979854033
Offset: 1
The initial values of S(n) are 5/8, 37/40, 677/680, 231877/231880, 21507565637/21507565640, 231287689900961870437/231287689900961870440, ...
A376185
a(n) = denominator of the sum S(n) defined in A376062.
Original entry on oeis.org
12, 48, 624, 97968, 2399530224, 1439436326371902768, 517994234419759747473589427583418224, 67079506723028253472357256785558488997471406450171845011442457607246768
Offset: 1
The initial values of S(n) are 7/12, 43/48, 619/624, 97963/97968, 2399530219/2399530224, 1439436326371902763/1439436326371902768 ...
A376186
a(n) = denominator of the sum S(n) defined in A376184.
Original entry on oeis.org
8, 40, 680, 231880, 21507565640, 231287689900961870440, 21397598199889399837872215012598300187880, 228928604361955042169940915981517711585578107873998357253128210226981219949635080
Offset: 1
The initial values of S(n) are 5/8, 37/40, 677/680, 231877/231880, 21507565637/21507565640, 231287689900961870437/231287689900961870440, ...
Cf.
A004168,
A082732,
A374663,
A375516,
A375531,
A375532,
A375781,
A375522,
A376048-
A376062,
A376184,
A376185.
A376768
a(1) = 2; thereafter, a(n) = c*A376767(n-1) + 1, where c=4 if n is even, c=2 if n is odd.
Original entry on oeis.org
2, 5, 11, 221, 24311, 1182000821, 698562969831336611, 975980445639153806859347417915257421, 476268915135000629546288739757931900755190480621127468115605921390156911
Offset: 1
-
A376767[n_] := A376767[n] = If[n == 1, 1, If[OddQ[n], 2, 4]*#^2 + # & [A376767[n-1]]];
A376768[n_] := If[n == 1, 2, If[OddQ[n], 2, 4]*A376767[n-1] + 1];
Array[A376768, 10] (* Paolo Xausa, Dec 16 2024 *)
Comments