cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A375518 First differences of A375516.

Original entry on oeis.org

1, 2, 8, 36, 1152, 240000, 9696240000, 11752718457744180000, 15347376819435640459450549232576160000, 23554197523775043569951631809272942030408567274885169881327076295276944000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2024

Keywords

Comments

The terms of A375516 are not well-understood. The present sequence was suggested by the fact that, from a certain point on, the terms of A375516 end with the digits 1200. If powers of 2 and 3 are ignored, the terms of the present sequence appear to be perfect squares.

Crossrefs

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
    b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
    a:= n-> denom(s(n+1))-denom(s(n)):
    seq(a(n), n=0..10);  # Alois P. Heinz, Oct 19 2024
  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])];
    b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)];
    a[n_] := Denominator[s[n + 1]] - Denominator[s[n]];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 19 2024

A375520 a(n) = A375516(n)/LCM{1,...,n}.

Original entry on oeis.org

1, 2, 2, 2, 4, 20, 4020, 23086860, 13991331508857930, 6090228896601444631429868134927310, 9346903779275810940456996749711484938792041307270162838305692061624510
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2024

Keywords

Comments

It is a theorem of Rémy Sigrist (see the proof in A374983) that a(n) is an integer.

Crossrefs

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
    b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
    a:= n-> denom(s(n))/ilcm($1..n):
    seq(a(n), n=0..10);  # Alois P. Heinz, Oct 19 2024
  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])];
    b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)];
    a[n_] := If[n == 0, 1, Denominator[s[n]]/LCM @@ Range[n]];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)
  • Python
    from itertools import count, islice
    from math import gcd, lcm
    def A375520_gen(): # generator of terms
        p, q, c = 0, 1, 1
        for k in count(1):
            m = q//(k*(q-p))+1
            p, q = p*k*m+q, k*m*q
            p //= (r:=gcd(p,q))
            q //= r
            c = lcm(c,k)
            yield q//c
    A375520_list = list(islice(A375520_gen(),11)) # Chai Wah Wu, Aug 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 19 2024

A375527 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (A000959(k)*a(k)) < 1 (where A000959(k) is the k-th lucky number).

Original entry on oeis.org

2, 1, 1, 5, 49, 3823, 10436791, 91498340590348, 16878924054006628616561542268, 1037072167459498271969377959736955928500322755810409274896, 1758618383011028875762229897498966705737981284604676043205492817705756616240608451710873787593445097075800445688725
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2024

Keywords

Comments

Exact analog of A375781, with the primes replaced by the lucky numbers (A000959).
The motivation was to see if the unusual properties of the partial sums arising from A375781 and from A374663 would hold for other divergent series. It appears that they certainly hold here - see A375528.

Crossrefs

A375528 a(n) = denominator of Sum_{k = 1..n} 1 / (A000959(k)*A375527(k)).

Original entry on oeis.org

1, 2, 6, 42, 630, 57330, 219172590, 2287458514758690, 523246645674205487113407810300, 34223381526163442974989472671319545640510650941743506071550, 65068880171408068403202506207461768112305307530373013598603234255112994800902512713302330140957468591804616490482800
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2024

Keywords

Comments

The first few sums S(n) = Sum_{k = 1..n} 1/(A000959(k)*A375527(k)) are: 1/2, 5/6, 41/42, 629/630, 57329/57330,
219172589/219172590, 2287458514758689/2287458514758690,
523246645674205487113407810299/523246645674205487113407810300, ..., and the first 10 or 11 of these sums have the form (c-1)/c, where c is an integer. The present sequence gives the denominators.
For the harmonic series analog, A374663, Rémy Sigrist has shown that all the partial sums have that form (see A374983), and for the prime number analog, A375581, it seems that all partial sums except for n = 4 and 6 have this property (see A375521/A375522).

Crossrefs

A376060 Lexicographically earliest sequence of positive integers a(0), a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 0..n-1} Catalan(k)/a(k) < 1.

Original entry on oeis.org

2, 3, 13, 391, 426973, 546916547269, 940084230410591812263433, 2872214670866692695441731060944339347071024216683
Offset: 0

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Crossrefs

Formula

a(n+1) = Catalan(n+1)*A376061(n) + 1.
Previous Showing 31-35 of 35 results.