Original entry on oeis.org
1, 2, 8, 36, 1152, 240000, 9696240000, 11752718457744180000, 15347376819435640459450549232576160000, 23554197523775043569951631809272942030408567274885169881327076295276944000
Offset: 0
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> denom(s(n+1))-denom(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 19 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)];
a[n_] := Denominator[s[n + 1]] - Denominator[s[n]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)
Original entry on oeis.org
1, 2, 2, 2, 4, 20, 4020, 23086860, 13991331508857930, 6090228896601444631429868134927310, 9346903779275810940456996749711484938792041307270162838305692061624510
Offset: 0
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> denom(s(n))/ilcm($1..n):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 19 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)];
a[n_] := If[n == 0, 1, Denominator[s[n]]/LCM @@ Range[n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)
-
from itertools import count, islice
from math import gcd, lcm
def A375520_gen(): # generator of terms
p, q, c = 0, 1, 1
for k in count(1):
m = q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
c = lcm(c,k)
yield q//c
A375520_list = list(islice(A375520_gen(),11)) # Chai Wah Wu, Aug 28 2024
A375527
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (A000959(k)*a(k)) < 1 (where A000959(k) is the k-th lucky number).
Original entry on oeis.org
2, 1, 1, 5, 49, 3823, 10436791, 91498340590348, 16878924054006628616561542268, 1037072167459498271969377959736955928500322755810409274896, 1758618383011028875762229897498966705737981284604676043205492817705756616240608451710873787593445097075800445688725
Offset: 1
A375528
a(n) = denominator of Sum_{k = 1..n} 1 / (A000959(k)*A375527(k)).
Original entry on oeis.org
1, 2, 6, 42, 630, 57330, 219172590, 2287458514758690, 523246645674205487113407810300, 34223381526163442974989472671319545640510650941743506071550, 65068880171408068403202506207461768112305307530373013598603234255112994800902512713302330140957468591804616490482800
Offset: 1
A376060
Lexicographically earliest sequence of positive integers a(0), a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 0..n-1} Catalan(k)/a(k) < 1.
Original entry on oeis.org
2, 3, 13, 391, 426973, 546916547269, 940084230410591812263433, 2872214670866692695441731060944339347071024216683
Offset: 0
Comments