cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A374765 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 225, 357, 565, 891, 1399, 2191, 3420, 5321, 8256, 12774, 19711, 30339, 46584, 71359, 109066, 166340, 253163, 384539, 582972, 882166, 1332538, 2009377, 3024969, 4546562, 6822926, 10223632, 15297051, 22855872, 34103117
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,2,1) has strictly decreasing runs ((3,1),(2),(2,1)), with leaders (3,2,2), so is counted under a(9).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (312)
                                (2111)   (321)
                                (11111)  (411)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

The opposite version is A374690.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A189076.
- For leaders of anti-runs we have A374682.
- For leaders of strictly increasing runs we have A374697.
- For leaders of weakly decreasing runs we have A374747.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=r, min(m, u), dfs(m-s, s, s)*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)*prod(i=t+1, s-1, 1+x^i)));
    lista(nn) = Vec(dfs(nn, 1, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A375402 Numbers whose maximal anti-runs of weakly increasing prime factors (with multiplicity) have distinct maxima.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

First differs from A349810 in lacking 150.
An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.
The partitions with these Heinz numbers are those with (1) no part appearing more than twice and (2) the greatest part appearing only once.
Note the prime factors can alternatively be written in weakly decreasing order.
How is does the sequence relate to A317092? - R. J. Mathar, Aug 20 2024

Examples

			The maximal anti-runs of prime factors of 150 are ((2,3,5),(5)), with maxima (5,5), so 150 is not in the sequence.
The maximal anti-runs of prime factors of 180 are ((2),(2,3),(3,5)), with maxima (2,3,5), so 180 is in the sequence.
The maximal anti-runs of prime factors of 300 are ((2),(2,3,5),(5)), with maxima (2,5,5), so 300 is not in the sequence.
		

Crossrefs

For identical instead of distinct we have A065200, complement A065201.
A version for compositions (instead of partitions) is A374767.
Partitions of this type are counted by A375133.
For minima instead of maxima we have A375398, counted by A375134.
The complement for minima is A375399, counted by A375404.
The complement is A375403, counted by A375401.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[150],UnsameQ@@Max /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]

A374639 Numbers k such that the leaders of maximal anti-runs in the k-th composition in standard order (A066099) are not distinct.

Original entry on oeis.org

3, 7, 10, 14, 15, 21, 23, 27, 28, 29, 30, 31, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 73, 79, 84, 85, 86, 87, 90, 94, 95, 99, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  14: (1,1,2)
  15: (1,1,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

First differs from A335466 in lacking 166, complement A335467.
The complement for leaders of identical runs is A374249, counted by A274174.
For leaders of identical runs we have A374253, counted by A335548.
Positions of non-distinct (or non-strict) rows in A374515.
The complement is A374638, counted by A374518.
For identical instead of non-distinct we have A374519, counted by A374517.
For identical instead of distinct we have A374520, counted by A374640.
Compositions of this type are counted by A374678.
Other functional neighbors are A374768, A374698, A374701, A374767.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A375403 Numbers whose maximal anti-runs of weakly increasing prime factors (with multiplicity) do not have distinct maxima.

Original entry on oeis.org

4, 8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 48, 49, 50, 54, 56, 64, 72, 75, 80, 81, 88, 96, 98, 100, 104, 108, 112, 120, 121, 125, 128, 135, 136, 144, 147, 150, 152, 160, 162, 168, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 242, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2024

Keywords

Comments

First differs from A299117 in having 150.
An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.
The partitions with these Heinz numbers are those with (1) some part appearing more than twice or (2) the greatest part appearing more than once.
Note the prime factors can alternatively be written in weakly decreasing order.

Examples

			The maximal anti-runs of prime factors of 150 are ((2,3,5),(5)), with maxima (5,5), so 150 is in the sequence.
The maximal anti-runs of prime factors of 180 are ((2),(2,3),(3,5)), with maxima (2,3,5), so 180 is not in the sequence.
The maximal anti-runs of prime factors of 300 are ((2),(2,3,5),(5)), with maxima (2,5,5), so 300 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
		

Crossrefs

For identical instead of distinct we have A065201, complement A065200.
The complement for minima is A375398, counted by A375134.
For minima instead of maxima we have A375399, counted by A375404.
Partitions of this type are counted by A375401.
The complement is A375402, counted by A375133.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[150],!UnsameQ@@Max /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]

A374766 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of maximal strictly decreasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 8, 7, 0, 0, 0, 1, 3, 17, 11, 0, 0, 0, 0, 4, 10, 35, 15, 0, 0, 0, 0, 1, 12, 28, 65, 22, 0, 0, 0, 0, 1, 6, 31, 70, 118, 30, 0, 0, 0, 0, 1, 3, 22, 78, 163, 203, 42, 0, 0, 0, 0, 0, 4, 13, 69, 186, 354, 342, 56
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Are the column-sums finite?

Examples

			Triangle begins:
   1
   0   1
   0   0   2
   0   0   1   3
   0   0   0   3   5
   0   0   0   1   8   7
   0   0   0   1   3  17  11
   0   0   0   0   4  10  35  15
   0   0   0   0   1  12  28  65  22
   0   0   0   0   1   6  31  70 118  30
   0   0   0   0   1   3  22  78 163 203  42
   0   0   0   0   0   4  13  69 186 354 342  56
Row n = 6 counts the following compositions:
  .  .  .  (321)  (42)    (51)     (6)
                  (132)   (411)    (15)
                  (2121)  (141)    (24)
                          (312)    (114)
                          (231)    (33)
                          (213)    (123)
                          (3111)   (1113)
                          (1311)   (222)
                          (1131)   (1122)
                          (2211)   (11112)
                          (2112)   (111111)
                          (1221)
                          (1212)
                          (21111)
                          (12111)
                          (11211)
                          (11121)
		

Crossrefs

Column n = k is A000041.
Row-sums are A011782.
For length instead of sum we have A333213.
The corresponding rank statistic is A374758, row-sums of A374757.
For identical leaders we have A374760, ranks A374759.
For distinct leaders we have A374761, ranks A374767.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of weakly decreasing runs we have A374748.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Greater]]==k&]], {n,0,15},{k,0,n}]
Previous Showing 21-25 of 25 results.