cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A380132 Numbers k such that (47^k + 2^k)/49 is prime.

Original entry on oeis.org

11, 13, 103, 15383
Offset: 1

Views

Author

Robert Price, Jan 12 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(47^# + 2^#)/49] &]

A380253 Numbers k such that (25^k + 2^k)/27 is prime.

Original entry on oeis.org

19, 109, 967, 2143, 11471, 11939
Offset: 1

Views

Author

Robert Price, Jan 17 2025

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(25^# + 2^#)/27] &]

A380355 Numbers k such that (47^k - 2^k)/45 is prime.

Original entry on oeis.org

17, 103, 773, 2467, 41969
Offset: 1

Views

Author

Robert Price, Jan 22 2025

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(47^# - 2^#)/45] &]

A381092 Numbers k such that (43^k + 2^k)/45 is prime.

Original entry on oeis.org

31, 41, 61, 599, 1231, 1249, 35671
Offset: 1

Views

Author

Robert Price, Feb 13 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(43^# + 2^#)/45] &]

A381093 Numbers k such that (26^k - 3^k)/23 is prime.

Original entry on oeis.org

2, 31, 263, 743, 1439, 6661, 78593
Offset: 1

Views

Author

Robert Price, Feb 13 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(26^# - 3^#)/23] &]

A381200 Numbers k such that (49^k - 2^k)/47 is prime.

Original entry on oeis.org

3, 5, 29, 89, 35279
Offset: 1

Views

Author

Robert Price, Feb 16 2025

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(49^# - 2^#)/47] &]

A381338 Numbers k such that (22^k - 3^k)/19 is prime.

Original entry on oeis.org

5, 31, 823, 15287, 26293, 32083, 51263, 92791
Offset: 1

Views

Author

Robert Price, Feb 20 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(22^# - 3^#)/19] &]

A382391 Numbers k such that (23^k - 3^k)/20 is prime.

Original entry on oeis.org

3, 7, 31, 47, 109, 151, 223, 463, 739, 6427, 17581, 30517
Offset: 1

Views

Author

Robert Price, Mar 23 2025

Keywords

Comments

The definition implies that k must be a prime.
a(13) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(23^# - 3^#)/20] &]

A382866 Numbers k such that (49^k + 2^k)/51 is prime.

Original entry on oeis.org

13, 307, 1187, 9241, 94321
Offset: 1

Views

Author

Robert Price, Jun 11 2025

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(49^# + 2^#)/51] &]

A384736 Numbers k such that (28^k - 3^k)/25 is prime.

Original entry on oeis.org

2, 3, 7, 43, 197, 13397, 28837, 29153
Offset: 1

Views

Author

Robert Price, Jun 08 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(28^# - 3^#)/25] &]
Previous Showing 21-30 of 45 results. Next