cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A377839 Numbers k such that (25^k - 2^k)/23 is prime.

Original entry on oeis.org

11, 199, 509, 857, 42841
Offset: 1

Views

Author

Robert Price, Nov 09 2024

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(25^# - 2^#)/23] &]

A378115 Numbers k such that (23^k + 2^k)/25 is prime.

Original entry on oeis.org

3, 19, 61, 97, 397, 1511
Offset: 1

Views

Author

Robert Price, Nov 16 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(23^# + 2^#)/25] &]

A378953 Numbers k such that (29^k + 2^k)/31 is prime.

Original entry on oeis.org

3, 7, 11, 157, 1429, 2579, 11909
Offset: 1

Views

Author

Robert Price, Dec 11 2024

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(29^# + 2^#)/31] &]

A379428 Numbers k such that (39^k + 2^k)/41 is prime.

Original entry on oeis.org

3, 5, 19, 2543, 4691, 14669, 19819, 53891, 83137
Offset: 1

Views

Author

Robert Price, Dec 22 2024

Keywords

Comments

The definition implies that k must be a prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(39^# + 2^#)/41] &]

A379429 Numbers k such that (31^k + 2^k)/33 is prime.

Original entry on oeis.org

229, 1429, 36083, 44089
Offset: 1

Views

Author

Robert Price, Dec 22 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(31^# + 2^#)/33] &]

A379986 Numbers k such that (20^k + 3^k)/23 is prime.

Original entry on oeis.org

3, 19, 271, 577, 977, 1871, 8647, 9479, 34759, 44959, 63149
Offset: 1

Views

Author

Robert Price, Jan 07 2025

Keywords

Comments

The definition implies that k must be a prime.
a(12) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(20^# + 3^#)/23] &]

A379987 Numbers k such that (35^k + 2^k)/37 is prime.

Original entry on oeis.org

5, 1217, 2029, 5171, 5651, 23633, 41179, 71069
Offset: 1

Views

Author

Robert Price, Jan 07 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(35^# + 2^#)/37] &]

A379988 Numbers k such that (27^k + 2^k)/29 is prime.

Original entry on oeis.org

11, 2297, 2707, 3187
Offset: 1

Views

Author

Robert Price, Jan 07 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(27^# + 2^#)/29] &]

A380131 Numbers k such that (45^k + 2^k)/47 is prime.

Original entry on oeis.org

17, 281, 463, 5393, 12809, 19031, 53173
Offset: 1

Views

Author

Robert Price, Jan 12 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(45^# + 2^#)/47] &]

A380132 Numbers k such that (47^k + 2^k)/49 is prime.

Original entry on oeis.org

11, 13, 103, 15383
Offset: 1

Views

Author

Robert Price, Jan 12 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(47^# + 2^#)/49] &]
Previous Showing 11-20 of 44 results. Next