cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A381092 Numbers k such that (43^k + 2^k)/45 is prime.

Original entry on oeis.org

31, 41, 61, 599, 1231, 1249, 35671
Offset: 1

Views

Author

Robert Price, Feb 13 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(43^# + 2^#)/45] &]

A381093 Numbers k such that (26^k - 3^k)/23 is prime.

Original entry on oeis.org

2, 31, 263, 743, 1439, 6661, 78593
Offset: 1

Views

Author

Robert Price, Feb 13 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(26^# - 3^#)/23] &]

A381200 Numbers k such that (49^k - 2^k)/47 is prime.

Original entry on oeis.org

3, 5, 29, 89, 35279
Offset: 1

Views

Author

Robert Price, Feb 16 2025

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(49^# - 2^#)/47] &]

A381338 Numbers k such that (22^k - 3^k)/19 is prime.

Original entry on oeis.org

5, 31, 823, 15287, 26293, 32083, 51263, 92791
Offset: 1

Views

Author

Robert Price, Feb 20 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(22^# - 3^#)/19] &]

A382391 Numbers k such that (23^k - 3^k)/20 is prime.

Original entry on oeis.org

3, 7, 31, 47, 109, 151, 223, 463, 739, 6427, 17581, 30517
Offset: 1

Views

Author

Robert Price, Mar 23 2025

Keywords

Comments

The definition implies that k must be a prime.
a(13) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(23^# - 3^#)/20] &]

A382866 Numbers k such that (49^k + 2^k)/51 is prime.

Original entry on oeis.org

13, 307, 1187, 9241, 94321
Offset: 1

Views

Author

Robert Price, Jun 11 2025

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(49^# + 2^#)/51] &]

A384736 Numbers k such that (28^k - 3^k)/25 is prime.

Original entry on oeis.org

2, 3, 7, 43, 197, 13397, 28837, 29153
Offset: 1

Views

Author

Robert Price, Jun 08 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(28^# - 3^#)/25] &]

A384767 Numbers k such that (29^k - 3^k)/26 is prime.

Original entry on oeis.org

3, 7, 17, 1069, 28081, 66509, 91493
Offset: 1

Views

Author

Robert Price, Jun 09 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(29^# - 3^#)/26] &]

A384925 Numbers k such that (32^k - 3^k)/29 is prime.

Original entry on oeis.org

3, 19, 37, 233, 283, 311, 1307, 1913
Offset: 1

Views

Author

Robert Price, Jun 12 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(32^# - 3^#)/29] &]

A384972 Numbers k such that (25^k - 3^k)/22 is prime.

Original entry on oeis.org

3, 5, 43, 709, 1151, 3323, 3643, 4637, 21661
Offset: 1

Views

Author

Robert Price, Jun 13 2025

Keywords

Comments

The definition implies that k must be a prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(25^# - 3^#)/22] &]
Previous Showing 21-30 of 42 results. Next