cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A379685 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x) * (1 - x*exp(x)) ).

Original entry on oeis.org

1, 3, 30, 551, 15028, 547717, 25068058, 1383323517, 89443699176, 6634682537993, 555501170856934, 51828125728865257, 5332620999430989244, 599894268098223894525, 73253745510185331985842, 9650159930850877102454693, 1364228585624978795929566928, 206008264557747708717576118417
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-k+2)^k*(2*n-k)!/(k!*(n-k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (3*n-k+2)^k * (2*n-k)!/(k! * (n-k)!).

A379860 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) * (1 - x*exp(x))^2 ).

Original entry on oeis.org

1, 3, 33, 670, 20201, 813626, 41138953, 2507380618, 179034345393, 14663636270146, 1355499957188321, 139617725163885002, 15858083818590019993, 1969242291969058135810, 265431275379747754496409, 38595876183118645455281386, 6022354171062480540156895457, 1003753282859589405272849735810
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*exp(-x)*(1-x*exp(x))^2)/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(n-k)*binomial(2*n+k+1, k)/(n-k)!)/(n+1);

Formula

E.g.f. A(x) satisfies A(x) = exp(x*A(x))/(1 - x * A(x) * exp(x*A(x)))^2.
a(n) = (n!/(n+1)) * Sum_{k=0..n} (n+k+1)^(n-k) * binomial(2*n+k+1,k)/(n-k)!.
Previous Showing 11-12 of 12 results.