cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A380156 Expansion of e.g.f. 1/(1 - 3*x*exp(3*x))^(1/3).

Original entry on oeis.org

1, 1, 10, 127, 2260, 52165, 1478098, 49666267, 1930817080, 85253566825, 4214519350750, 230609701370719, 13837049296702228, 903380930924784013, 63754235596937808874, 4836352735401636409795, 392451456493513697671792, 33920902255644870783973201, 3111255003645991777552833718
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^n*n!*sum(k=0, n, (-1)^k*k^(n-k)*binomial(-1/3, k)/(n-k)!);

Formula

a(n) = 3^n * n! * Sum_{k=0..n} (-1)^k * k^(n-k) * binomial(-1/3,k)/(n-k)!.
a(n) == 1 (mod 9).

A380021 Expansion of e.g.f. 1/(exp(-3*x) - 3*x*exp(-2*x))^(1/3).

Original entry on oeis.org

1, 2, 9, 77, 977, 16281, 335173, 8208901, 233037185, 7522621505, 272096862821, 10899761462085, 478990330829233, 22910468287983121, 1184832950732237381, 65877062190857942981, 3918656527419803705729, 248317978064709144523521, 16699787528059828201246021
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-3)^k*(k+1)^(n-k)*binomial(-1/3, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (-3)^k * (k+1)^(n-k) * binomial(-1/3,k)/(n-k)!.
Previous Showing 11-12 of 12 results.