A384595 a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(2), F(3), ..., F(n+1)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
0, -4, -18, -1059, -51115, -14122480, -5176201331, -8184762199782, -21582120875577408, -211126151053299550639, -3968236858233834575013603, -250193703665647266489840668160, -33362066597786815040358189976876663, -13879811335315653909400110618024123820786
Offset: 1
Keywords
Examples
The rows of M(4) are (1,2,3,5), (5,1,2,3), (3,5,1,2), (2,3,5,1); determinant(M(4)) = -429; permanent(M(4)) = 1689, so neg(M(4)) = (-429 - 1689)/2 = -1059 and pos(M(4)) = (-429 + 1689)/2 = 630.
Comments