A383366 Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.
4400700, 12963816, 29878920, 38353800, 44973480, 51894304, 52208520, 67849656, 73134432, 81685080, 100711656, 103759848, 105096096, 113044896, 113161320, 114608032, 128639034, 135465912, 135559080, 136786200, 139242740, 148758120, 156686088, 159628350, 171090416
Offset: 1
Examples
4400700 is a term since s(4400700) = 4840770, s(4840770) = 5456868, and s(5456868) = 4400700.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..4400
- Amiram Eldar, Table of n, a(n), s(a(n)), s(s(a(n))) for n = 1..4400.
Programs
-
Mathematica
f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, # < n && DigitCount[#, 2, 1] == h &]]; q[k_] := Module[{k1 = f[k], k2}, If[k1 <= k, False, k2 = f[k1]; k2 > k && f[k2] == k]]; Select[Range[13000000], q]
-
PARI
f(n) = {my(h = hammingweight(n)); sumdiv(n, d, d * (d < n && hammingweight(d) == h)); } isok(k) = {my(k1 = f(k), k2); if(k1 <= k, 0, k2 = f(k1); k2 > k && f(k2) == k);}
Comments