A384396
Position of first appearance of n in A384389 (proper choices of disjoint strict partitions of each prime index).
Original entry on oeis.org
1, 5, 11, 13, 17, 19, 62, 23, 111, 29, 123, 31, 129, 217, 37, 141, 106, 41, 159, 391, 118, 43
Offset: 0
Positions of first appearances in
A384389.
Cf.
A179009,
A279790,
A357982,
A381454,
A382525,
A383706,
A384321,
A384322,
A384347,
A384349,
A384390,
A384393.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
lv=Table[Length[pofprop[prix[n]]],{n,100}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
Table[Position[lv,x][[1,1]],{x,0,mnrm[lv+1]-1}]
A384723
Heinz numbers of conjugates of maximally refined strict integer partitions.
Original entry on oeis.org
1, 2, 4, 6, 12, 18, 24, 30, 60, 90, 120, 150, 180, 210, 240, 420, 540, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 2520, 3360, 4620, 6300, 6930, 7560, 9240
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
12: {1,1,2}
18: {1,2,2}
24: {1,1,1,2}
30: {1,2,3}
60: {1,1,2,3}
90: {1,2,2,3}
120: {1,1,1,2,3}
150: {1,2,3,3}
180: {1,1,2,2,3}
210: {1,2,3,4}
240: {1,1,1,1,2,3}
420: {1,1,2,3,4}
540: {1,1,2,2,2,3}
630: {1,2,2,3,4}
840: {1,1,1,2,3,4}
Partitions of this type are counted by
A179009.
For at least one instead of exactly one choice we appear to have
A384010.
A122111 represents conjugation in terms of Heinz numbers.
A357982 counts strict partitions of prime indices, non-strict
A299200.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Select[Range[100],With[{y=conj[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
Comments