A383514
Heinz numbers of non Wilf section-sum partitions.
Original entry on oeis.org
10, 14, 15, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 170, 177, 178, 182, 183, 185, 187, 190
Offset: 1
The terms together with their prime indices begin:
10: {1,3} 57: {2,8} 94: {1,15}
14: {1,4} 58: {1,10} 95: {3,8}
15: {2,3} 62: {1,11} 100: {1,1,3,3}
22: {1,5} 65: {3,6} 106: {1,16}
26: {1,6} 69: {2,9} 111: {2,12}
33: {2,5} 74: {1,12} 115: {3,9}
34: {1,7} 77: {4,5} 118: {1,17}
35: {3,4} 82: {1,13} 119: {4,7}
38: {1,8} 85: {3,7} 122: {1,18}
39: {2,6} 86: {1,14} 123: {2,13}
46: {1,9} 87: {2,10} 129: {2,14}
51: {2,7} 91: {4,6} 130: {1,3,6}
55: {3,5} 93: {2,11} 133: {4,8}
Ranking sequences are shown in parentheses below.
These partitions are counted by
A383506.
A122111 represents conjugation in terms of Heinz numbers.
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (
A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (
A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (
A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (
A383517).
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],disjointFamilies[conj[prix[#]]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]
A383712
Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct 0-appended differences.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 20, 23, 25, 28, 29, 31, 37, 41, 43, 44, 45, 47, 49, 50, 52, 53, 59, 61, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 121, 124, 127, 131, 137, 139, 148, 149, 151, 153, 157, 163, 164
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
20: {1,1,3}
23: {9}
25: {3,3}
28: {1,1,4}
29: {10}
31: {11}
37: {12}
41: {13}
43: {14}
44: {1,1,5}
45: {2,2,3}
47: {15}
49: {4,4}
50: {1,3,3}
For just distinct 0-appended differences we have
A325367, counted by
A325324.
These partitions are counted by
A383709.
A122111 represents conjugation in terms of Heinz numbers.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks
A383532.
A383530 counts partitions that are not Wilf or conjugate-Wilf, ranks
A383531.
Cf.
A000720,
A005117,
A047966,
A238745,
A320348,
A325325,
A325349,
A325355,
A325366,
A325368,
A325388,
A383506.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],UnsameQ@@Length/@Split[prix[#]] && UnsameQ@@Differences[Append[Reverse[prix[#]],0]]&]
Comments