cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A383506 Number of non Wilf section-sum partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 12, 18, 25, 32, 42, 55, 64, 87, 101, 128, 147, 192, 218, 273, 314, 394, 450, 552, 631, 772, 886, 1066, 1221, 1458, 1677, 1980, 2269, 2672, 3029
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different, ranked by A130091.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(4) = 1 through a(12) = 12 partitions (A=10, B=11):
  (31)  (32)  (51)  (43)  (53)    (54)  (64)    (65)    (75)
        (41)        (52)  (62)    (63)  (73)    (74)    (84)
                    (61)  (71)    (72)  (82)    (83)    (93)
                          (3311)  (81)  (91)    (92)    (A2)
                                        (631)   (A1)    (B1)
                                        (3322)  (632)   (732)
                                        (4411)  (641)   (831)
                                                (731)   (5511)
                                                (6311)  (6411)
                                                        (7311)
                                                        (63111)
                                                        (333111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A351592 (A384006).
The Look-and-Say case is A383511 (A383518).
These partitions are ranked by (A383514).
For Wilf instead of non Wilf we have A383519 (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).

Programs

  • Mathematica
    disjointDiffs[y_]:=Select[Tuples[IntegerPartitions /@ Differences[Prepend[Sort[y],0]]], UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n], disjointDiffs[#]!={} && !UnsameQ@@Length/@Split[#]&]],{n,0,15}]

A384006 Heinz numbers of Look-and-Say partitions without distinct multiplicities (non Wilf).

Original entry on oeis.org

216, 1000, 1296, 2744, 3375, 7776, 9261, 10000, 10648, 17576, 32400, 35937, 38416, 38880, 39304, 42875, 46656, 50625, 54000, 54432, 54872, 59319, 63504, 81000, 85536, 90000, 97336, 100000
Offset: 1

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different, ranked by A130091, complement A130092.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.

Examples

			The terms together with their prime indices begin:
     216: {1,1,1,2,2,2}
    1000: {1,1,1,3,3,3}
    1296: {1,1,1,1,2,2,2,2}
    2744: {1,1,1,4,4,4}
    3375: {2,2,2,3,3,3}
    7776: {1,1,1,1,1,2,2,2,2,2}
    9261: {2,2,2,4,4,4}
   10000: {1,1,1,1,3,3,3,3}
   10648: {1,1,1,5,5,5}
   17576: {1,1,1,6,6,6}
   32400: {1,1,1,1,2,2,2,2,3,3}
   35937: {2,2,2,5,5,5}
   38416: {1,1,1,1,4,4,4,4}
   38880: {1,1,1,1,1,2,2,2,2,2,3}
   39304: {1,1,1,7,7,7}
   42875: {3,3,3,4,4,4}
   46656: {1,1,1,1,1,1,2,2,2,2,2,2}
   50625: {2,2,2,2,3,3,3,3}
   54000: {1,1,1,1,2,2,2,3,3,3}
   54432: {1,1,1,1,1,2,2,2,2,2,4}
   54872: {1,1,1,8,8,8}
   59319: {2,2,2,6,6,6}
   63504: {1,1,1,1,2,2,2,2,4,4}
   81000: {1,1,1,2,2,2,2,3,3,3}
   85536: {1,1,1,1,1,2,2,2,2,2,5}
   90000: {1,1,1,1,2,2,3,3,3,3}
   97336: {1,1,1,9,9,9}
  100000: {1,1,1,1,1,3,3,3,3,3}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A351592.
For section-sum instead of Look-and-Say we have (A383514), counted by A383506.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],disjointFamilies[prix[#]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]

A383516 Heinz numbers of Look-and-Say partitions that are not section-sum partitions.

Original entry on oeis.org

12, 18, 24, 48, 54, 63, 72, 96, 108, 144, 147, 162, 189, 192, 216, 288, 324, 360, 384, 432, 486, 504, 540, 567, 576, 600, 648, 720, 756, 768, 792, 864, 936, 972, 1008, 1029, 1152, 1176, 1188, 1200, 1224, 1296, 1323, 1350, 1368, 1400, 1404, 1440, 1458, 1500
Offset: 1

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   24: {1,1,1,2}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   63: {2,2,4}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  144: {1,1,1,1,2,2}
  147: {2,4,4}
  162: {1,2,2,2,2}
  189: {2,2,2,4}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  288: {1,1,1,1,1,2,2}
  324: {1,1,2,2,2,2}
  360: {1,1,1,2,2,3}
  384: {1,1,1,1,1,1,1,2}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A383509.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],disjointFamilies[prix[#]]!={}&&disjointFamilies[conj[prix[#]]]=={}&]

A383517 Heinz numbers of integer partitions that are neither Look-and-Say nor section-sum partitions.

Original entry on oeis.org

6, 21, 30, 36, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 132, 138, 140, 150, 154, 156, 165, 168, 174, 180, 186, 198, 204, 210, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258, 264, 270, 273, 276, 280, 282, 286, 294, 300, 306, 308, 312, 315
Offset: 1

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432, complement A381433.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294, complement A351295.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   21: {2,4}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A383510.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],disjointFamilies[prix[#]]=={}&&disjointFamilies[conj[prix[#]]]=={}&]

A383520 Heinz numbers of section-sum partitions with distinct multiplicities (Wilf).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 49, 50, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125
Offset: 1

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

First differs from A383515 in having 325.
First differs from A383532 in having 325.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different, ranked by A130091.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Ranking sequences are shown in parentheses below.
For non Wilf instead of Wilf we have (A383514), counted by A383506.
These partitions are counted by A383519.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A351592 counts non Wilf Look-and-Say partitions, ranked by (A384006).
A381431 is the section-sum transform.

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],disjointFamilies[conj[prix[#]]]!={}&&UnsameQ@@Last/@FactorInteger[#]&]

A384007 Heinz numbers of non Look-and-Say section-sum partitions.

Original entry on oeis.org

10, 14, 15, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 170, 177, 178, 182, 183, 185, 187, 190
Offset: 1

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

First differs from A383514 in lacking 1000.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The terms together with their prime indices begin:
    10: {1,3}    57: {2,8}      94: {1,15}
    14: {1,4}    58: {1,10}     95: {3,8}
    15: {2,3}    62: {1,11}    100: {1,1,3,3}
    22: {1,5}    65: {3,6}     106: {1,16}
    26: {1,6}    69: {2,9}     111: {2,12}
    33: {2,5}    74: {1,12}    115: {3,9}
    34: {1,7}    77: {4,5}     118: {1,17}
    35: {3,4}    82: {1,13}    119: {4,7}
    38: {1,8}    85: {3,7}     122: {1,18}
    39: {2,6}    86: {1,14}    123: {2,13}
    46: {1,9}    87: {2,10}    129: {2,14}
    51: {2,7}    91: {4,6}     130: {1,3,6}
    55: {3,5}    93: {2,11}    133: {4,8}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A383509.
Negating both properties gives (A383516).
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],disjointFamilies[prix[#]]=={}&&disjointFamilies[conj[prix[#]]]!={}&]

A383519 Number of section-sum partitions of n that have all distinct multiplicities (Wilf).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 21, 27, 30, 33, 41, 50, 57, 68, 79, 89, 112, 126, 144, 172, 198, 220, 257, 298, 327, 383, 423, 477, 533, 621, 650, 760, 816, 920, 1013
Offset: 0

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091).

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (1111)  (11111)  (222)     (331)      (332)
                                     (411)     (511)      (611)
                                     (3111)    (4111)     (2222)
                                     (111111)  (31111)    (5111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A098859 (A130091), conjugate (A383512).
For non Wilf instead of Wilf we have A383506 (A383514).
These partitions are ranked by (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}]
Showing 1-7 of 7 results.