cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aamen Muharram

Aamen Muharram's wiki page.

Aamen Muharram has authored 1 sequences.

A354383 Fibonacci sequence beginning 11, 26.

Original entry on oeis.org

11, 26, 37, 63, 100, 163, 263, 426, 689, 1115, 1804, 2919, 4723, 7642, 12365, 20007, 32372, 52379, 84751, 137130, 221881, 359011, 580892, 939903, 1520795, 2460698, 3981493, 6442191, 10423684, 16865875, 27289559, 44155434, 71444993, 115600427, 187045420
Offset: 0

Author

Aamen Muharram, Aug 04 2022

Keywords

Comments

The Pisano period of this sequence is equal to the Pisano period of the Fibonacci sequence for all non-multiples of 269.

References

  • Aamen Muharram, Investigations of the Gibonacci sequences: Simple Formulae and Gibonacci mod m.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1}, {11, 26}, 35] (* Amiram Eldar, Aug 05 2022 *)
  • Python
    from gmpy2 import fib2
    def A354383(n): return int(26*(a:=fib2(n))[0]+11*a[1]) # Chai Wah Wu, Aug 07 2022

Formula

a(n) = F(n-4) + L(n+1) + F(n+7).
a(n) = 2*F(n-1) + 3*F(n+4) + 11*F(n).
a(n) = 3*F(n+5) - 2*F(n-3).
a(n) = L(n-3) + L(n+6) - 3*F(n+2), where L(n) is the n-th Lucas number and F(n) is the n-th Fibonacci number.
G.f.: (11+15*x)/(1-x-x^2).
a(n) = 11*F(n-1) + 26*F(n). - Chai Wah Wu, Aug 07 2022