A373701 Extension of Mahler-Popken complexity to the rationals. The minimal number of 1's required to build the n-th positive rational in the Cantor ordering using only +, /, and *.
1, 3, 2, 4, 3, 5, 5, 4, 4, 6, 5, 6, 7, 7, 5, 5, 5, 7, 8, 6, 6, 7, 8, 9, 6, 6, 6, 7, 9, 6, 6, 8, 8, 9, 10, 7, 7, 8, 7, 7, 7, 9, 11, 8, 8, 8, 10, 10, 10, 10, 11, 7, 9, 7, 7, 8, 7, 9, 11, 11, 10, 8, 8, 9, 10, 12, 12, 8, 9, 8, 8, 9, 11, 13, 12, 9, 8, 8, 8, 9, 10
Offset: 1
Keywords
Examples
| | rational | minimal expression | a(n) | |---:|:-----------|:----------------------------|--------:| | 1 | 1/1 | 1 | 1 | | 2 | 1/2 | 1/(1+1) | 3 | | 3 | 2/1 | 1+1 | 2 | | 4 | 1/3 | 1/(1+1+1) | 4 | | 5 | 3/1 | 1+1+1 | 3 | | 6 | 1/4 | 1/(1+1+1+1) | 5 | | 7 | 2/3 | (1+1)/(1+1+1) | 5 | | 8 | 3/2 | 1+(1/(1+1)) | 4 | | 9 | 4/1 | 1+1+1+1 | 4 | | 10 | 1/5 | 1/(1+1+1+1+1) | 6 | | 11 | 5/1 | 1+1+1+1+1 | 5 | | 12 | 1/6 | 1/((1+1)*(1+1+1)) | 6 | | 13 | 2/5 | (1+1)/(1+1+1+1+1) | 7 | | 14 | 3/4 | (1+1+1)/(1+1+1+1) | 7 | | 15 | 4/3 | 1+(1/(1+1+1)) | 5 | | 16 | 5/2 | 1+1+(1/(1+1)) | 5 | | 17 | 6/1 | (1+1)*(1+1+1) | 5 | | 18 | 1/7 | 1/((1+1+1)*(1+1) +1) | 7 | | 19 | 3/5 | (1+1+1)/(1+1+1+1+1) | 8 | | 20 | 5/3 | 1+((1+1)/(1+1+1)) | 6 | | 21 | 7/1 | (1+1)*(1+1+1)+1 | 6 | | 22 | 1/8 | 1/((1+1)*(1+1)*(1+1)) | 7 | | 23 | 2/7 | (1+1)/((1+1)*(1+1+1)+1) | 8 | | 24 | 4/5 | (1+1+1+1)/(1+1+1+1+1) | 9 | | 25 | 5/4 | 1+(1/(1+1+1+1)) | 6 | | 26 | 7/2 | 1+1+1+(1/(1+1)) | 6 | | 27 | 8/1 | (1+1)*(1+1)*(1+1) | 6 | | 28 | 1/9 | 1/((1+1+1)*(1+1+1)) | 7 | | 29 | 3/7 | (1+1+1)/((1+1+1)*(1+1) +1) | 9 | | 30 | 7/3 | 1+1+(1/(1+1+1)) | 6 | | 31 | 9/1 | (1+1+1)*(1+1+1) | 6 | | 32 | 1/10 | 1/((1+1+1)*(1+1+1)+1) | 8 | | 33 | 2/9 | (1+1)/((1+1+1)*(1+1+1)) | 8 | | 34 | 3/8 | (1+1+1)/((1+1)*(1+1)*(1+1)) | 9 | | 35 | 4/7 | (1+1+1+1)/((1+1)*(1+1+1)+1) | 10 | | 36 | 5/6 | (1/(1+1))+(1/(1+1+1)) | 7 | | 37 | 6/5 | 1+(1/(1+1+1+1+1)) | 7 |
Links
- Dimitri Zucker, The Most Underrated Concept in Number Theory, Combo Class Youtube video.
Comments