cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ann Marie Murray

Ann Marie Murray's wiki page.

Ann Marie Murray has authored 1 sequences.

A265203 Palindromes that can be written as the sum of two or more consecutive positive cubes.

Original entry on oeis.org

9, 99, 9009, 14841, 76167, 108801, 239932, 828828, 886688, 2112112, 4663664, 7152517, 17333371, 17511571, 42844824, 61200216, 135666531, 658808856, 6953443596, 6961551696, 27110501172, 46277277264, 405162261504, 483867768384, 522733337225, 588114411885
Offset: 1

Author

Ann Marie Murray, Dec 03 2015

Keywords

Comments

Can any term in the sequence be written as sum of 2 or more consecutive cubes in more than one way? The answer is no for a(1)-a(46). - Chai Wah Wu, Dec 17 2015

Examples

			14841 can be written as 16^3 + 17^3 + 18^3.
		

Crossrefs

Programs

  • Maple
    ispali:= proc(n) local L; L:= convert(n,base,10);
      ListTools:-Reverse(L) = L end proc:
    A265203:= proc(N) # get all terms <= N
      local S,a,b,t;
      S:= select(t -> t<=N and ispali(t),
         {seq(seq(b^2*(b+1)^2/4 - a^2*(a+1)^2/4, a=0..b-2),b=2..(1+iroot(4*N,3))/2)});
      sort(convert(S,list));
    end proc:
    A265203(10^9); # Robert Israel, Dec 07 2015
  • Mathematica
    lim = 800; Sort@ Select[Plus @@@ Map[#^3 &, Select[Flatten[Table[Partition[Range@ lim, k, 1], {k, 2, lim}], 1], Times @@ Differences@ # == 1 &]], # == Reverse@ # &@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 16 2015 *)
  • Sage
    def palindromic_cubic_sums(x_max):
        success = set()
        for x_min in range(1,x_max^(1/3)):
            sum_powers = x_min^3
            for i in range(x_min+1,x_max^(1/3)):
                sum_powers += (i^3)
                if sum_powers >= x_max:
                    break
                if str(sum_powers) == str(sum_powers)[::-1]:
                    success.add(sum_powers)
        return sorted(success)