A367497 Number of 4-regular loopless multigraphs on n vertices.
1, 0, 1, 1, 15, 158, 3355, 93708, 3535448, 170816680, 10307577384, 759439940230, 67095584693434, 7001532238614324, 851997581131397870, 119582892039683711842, 19176016845387328919910, 3484133398830462852182192, 712017802878894004029129622, 162597177988359237252433594350
Offset: 0
Keywords
Examples
For n=2, the only polynomial is: (x_1 - x_2)^4. Which corresponds to the following adjacency matrix: [0,4 4,0]. For n=3, the only polynomial is: (x_1 - x_2)^2 * (x_1 - x_3)^2 * (x_2 - x_3)^2. Which corresponds to the following adjacency matrix: [0, 2, 2 2, 0, 2 2, 2, 0]. For n=4, an example of a polynomial would be (x_1 - x_3)^3 * (x_1 - x_4)^1 * (x_2 - x_3)^1 * (x_2 - x_4)^3 = (x_1^4 * x_2^4) + (x_3^4 * x_4^4) + ... + {other polynomial terms}. And this corresponds to the following adjacency matrix: [0, 0, 3, 1 0, 0, 1, 3 3, 1, 0, 0 1, 3, 0, 0].
Comments