A141682 Number of isomorphism classes of (2n+1)-reflexive polygons.
16, 1, 12, 29, 1, 61, 81, 1, 113, 131, 2, 163, 50, 2, 215, 233, 2, 34, 285, 3, 317, 335, 2, 367, 182, 3, 419, 72, 4, 469, 489, 3, 93, 539, 4, 571, 591, 3, 185, 641, 5, 673, 131, 5, 725, 240, 6, 148, 795, 5, 827, 845, 3, 877, 897, 7, 929, 186, 6, 338, 656, 7, 240, 1049, 8, 1081, 393, 5, 1133, 1151, 8, 542, 245, 7, 1235, 1253
Offset: 0
Keywords
Examples
a(0)=16 equals the number of isomorphism classes of (1-)reflexive polygons, A090045(2).
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..99 (from the Graded Ring Database)
- Dimitrios I. Dais, On the Twelve-Point Theorem for l-Reflexive Polygons, arXiv:1806.08351 [math.CO], 2018.
- A. M. Kasprzyk and B. Nill, Reflexive polytopes of higher index and the number 12, arXiv:1107.4945 [math.AG], 2011.
- A. M. Kasprzyk and B. Nill, Toric l-reflexive surfaces at Graded Ring Database.
Crossrefs
Cf. A090045.
Formula
It seems that for n > 2, a(n) = 17*n - k where k = 21, 22, 23, 24 iff 2*n+1 is a prime from A068228, A068229, A040117, A068231, respectively. - Andrey Zabolotskiy, Apr 21 2022
Comments