A374259 a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), with a(0)=4, a(1)=6, a(2)=20.
4, 6, 20, 48, 130, 336, 884, 2310, 6052, 15840, 41474, 108576, 284260, 744198, 1948340, 5100816, 13354114, 34961520, 91530452, 239629830, 627359044, 1642447296, 4299982850, 11257501248, 29472520900, 77160061446, 202007663444, 528862928880, 1384581123202, 3624880440720, 9490060198964
Offset: 0
Examples
For n=1, the R_{3,1,1} rocket graph is as follows and has a(1)=6 edge covers. *--* /| * | \| *--*
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Equals twice A059929.
Programs
-
Mathematica
LinearRecurrence[{2, 2, -1}, {4, 6, 20}, 50] (* Paolo Xausa, Jul 20 2024 *)
Formula
G.f.: (4-2*x)/(1-2*x-2*x^2+x^3).
a(n) = 2*A059929(n+1).
a(n) = Fibonacci(2n+2)+3*Fibonacci(n+1)*Fibonacci(n+1).
Comments