cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bruce Westbury

Bruce Westbury's wiki page.

Bruce Westbury has authored 10 sequences.

A251594 Dimension of space of invariant tensors in 2n-th tensor power of third fundamental representation of Sp(8).

Original entry on oeis.org

1, 1, 7, 240, 21720, 3371661, 753384764, 221280081152, 8057098267140, 34901583348508312, 17450751376913065040, 9843352171270598267648, 6153355867118768196316096, 4203420758907186950461719325, 3102284883642894954937435310820
Offset: 0

Author

Bruce Westbury, Dec 05 2014

Keywords

Crossrefs

Programs

  • LiE
    p_tensor(2*n,[0,0,1,0],C4)|[0,0,0,0]

A251598 Dimension of space of invariant tensors in 2n-th tensor power of natural representation of Sp(8).

Original entry on oeis.org

1, 1, 3, 15, 105, 944, 10340, 133055, 1958060, 32279090, 586453658, 11589971918, 246518371679, 5594169454700, 134456679614850, 3402014360391645, 90146180439817440, 2490533922180210720, 71468389947184389600, 2123114263550335500000
Offset: 0

Author

Bruce Westbury, Dec 05 2014

Keywords

Crossrefs

Programs

  • LiE
    p_tensor(2*n,[1,0,0,0],C4)|[0,0,0,0]

Formula

0=256*(2*n-1)*(n-1)*(n+3)*(2*n-3)*a(n-2)-4*(2*n-1)*(10*n^3+137*n^2+521*n+432)*a(n-1)+(n+4)*(n+7)*(n+9)*(n+10)*a(n), (conjectured). - Michael D. Weiner, Apr 07 2016

A251593 Dimension of space of invariant tensors in n-th tensor power of second fundamental representation of Sp(8).

Original entry on oeis.org

1, 0, 1, 1, 6, 21, 120, 702, 4851, 36549, 302031, 2687435, 25561745, 257747493, 2738202129, 30482602101, 353982846285, 427126636983, 53371267903029, 688581489582657, 9149097089801836, 124906922737719625, 1748648316615176130
Offset: 0

Author

Bruce Westbury, Dec 05 2014

Keywords

Crossrefs

Programs

  • LiE
    p_tensor(n,[0,1,0,0],C4)|[0,0,0,0]

A251596 Dimension of space of invariant tensors in n-th tensor power of fourth fundamental representation of Sp(8).

Original entry on oeis.org

1, 0, 1, 0, 5, 1, 70, 106, 2380, 12398, 184359, 1830820, 25990371, 348029255, 531547931, 83340599734, 1395460803100, 24298184539132, 442299791441900, 8348538362127894, 163180897579795284
Offset: 0

Author

Bruce Westbury, Dec 05 2014

Keywords

Crossrefs

Programs

  • LiE
    p_tensor(n,[0,0,0,1],C4)|[0,0,0,0]

A251591 Dimension of space of invariant tensors in 2n-th tensor power of the third fundamental representation of Sp(6).

Original entry on oeis.org

1, 1, 4, 35, 560, 14973, 589743, 30078048, 1824041570, 125400975830, 9507019477382, 78070828079199, 68560287232877740, 6376178095301876005, 623169409884847073730, 636070059202675270255520, 6745818886029778590765570, 740194253157571009569356970
Offset: 0

Author

Bruce Westbury, Dec 05 2014

Keywords

Crossrefs

Programs

  • LiE
    p_tensor(2*n,[0,0,1],C3)|[0,0,0]

A227292 Dimension of space of invariant tensors in the n-th tensor power of the adjoint representation of G2.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 80, 436, 2786, 19538, 147771, 1182095, 9890463, 85866068, 769212600, 7080642324, 66754295740, 642857161008, 6309892895338, 6300760829973, 639049976047882, 6574281878157350, 68519019810831408, 722711344283052608, 7707346411412142258, 83037096707432139882
Offset: 0

Author

Bruce Westbury, Jul 05 2013

Keywords

Comments

The limit a(n+1)/a(n) is 14. This is expected to be D-finite (and P-finite).

Examples

			For n=0 we have the trivial representation for n=2 we have the Killing form.
		

Crossrefs

Programs

  • LiE
    p_tensor(n,[0,1],G2)|[0,0]

A179663 The dimension of the space of invariant tensors in the n-th tensor power of the adjoint representation of the exceptional Lie algebra E8.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 79, 421, 2674, 19244, 156612, 1423028, 14320350, 158390872, 1912977222, 25083283995, 355246037162, 5409471180024, 88200546561838, 1534120589972637, 28369229081383675, 556021169447494656, 11517512836906556032, 251487262264563372960
Offset: 0

Author

Bruce Westbury, Jul 23 2010

Keywords

Comments

This is known to satisfy a linear recurrence relation with polynomial coefficients. The limit of a[n+1]/a[n] is 248.

Examples

			The n-th tensor power is the trivial representation for n=0 and is the adjoint representation for n=1. For n=2 every invariant tensor is a scalar multiple of a Killing form.
		

A179683 The dimension of the space of invariant tensors in the n-th tensor power of the adjoint representation of the exceptional Lie algebra E7.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 80, 436, 2877, 21828, 189877, 1865175, 20468437, 248376198, 3303397123, 47785692843, 746841034620, 12538089887528, 224955746518560, 4294093811333388, 86859002770470072, 1855099612560598420, 41698660497526383757
Offset: 0

Author

Bruce Westbury, Jul 24 2010

Keywords

Comments

This is known to satisfy a linear recurrence relation with polynomial coefficients. The limit of a(n+1)/a(n) is 133.

Examples

			The n-th tensor power is the trivial representation for n=0 and is the adjoint representation for n=1. For n=2 every invariant tensor is a scalar multiple of a Killing form.
		

Extensions

More terms from Bruce Westbury, Nov 08 2013

A179684 The dimension of the space of invariant tensors in the n-th tensor power of the adjoint representation of the exceptional Lie algebra E6.

Original entry on oeis.org

1, 0, 1, 1, 5, 17, 90, 542, 3962, 33554, 324489, 3520885, 42300709, 556530474, 7945317484, 122145525208, 2008827010000, 35143981009968
Offset: 0

Author

Bruce Westbury, Jul 24 2010

Keywords

Comments

This is known to satisfy a linear recurrence relation with polynomial coefficients. The limit of a(n+1)/a(n) is 78.

Examples

			The n-th tensor power is the trivial representation for n=0 and is the adjoint representation for n=1. For n=2 every invariant tensor is a scalar multiple of a Killing form.
		

A179685 The dimension of the space of invariant tensors in the n-th tensor power of the adjoint representation of the exceptional Lie algebra F4.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 80, 436, 2891, 22248, 198774, 2029140, 23310386, 296407466, 4109654354, 61348443380, 976111067870, 16423368282336, 290404344321126, 5370042566624118, 103427555919931446
Offset: 0

Author

Bruce Westbury, Jul 24 2010

Keywords

Comments

This is known to satisfy a linear recurrence relation with polynomial coefficients. The limit of a(n+1)/a(n) is 52.

Examples

			The n-th tensor power is the trivial representation for n=0 and is the adjoint representation for n=1. For n=2 every invariant tensor is a scalar multiple of a Killing form.