A309274 Ackermann Coding (BIT predicate) of transitive hereditarily finite sets.
0, 1, 3, 7, 11, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 267, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511, 523, 527, 543
Offset: 1
Keywords
Examples
23 is in the sequence because 23 = 2^4 + 2^2 + 2^1 + 2^0 encodes the transitive set {0,1,{1},{{1}}} (remember that 0 is the empty set and 1 is {0}).
Links
- Wikipedia, Hereditarily finite set
- Wikipedia, Transitive set
Programs
-
Mathematica
b[n_] := (Flatten @ Position[Reverse[IntegerDigits[n, 2]], 1] - 1); okQ[n_] := With[{bb = b[n]}, AllTrue[b /@ bb, Intersection[bb, #] == #&]]; Select[Range[0, 600], okQ] (* Jean-François Alcover, Jul 25 2019 *)
-
PARI
is(n) = { for (b=0, #binary(n), if (bittest(n, b), if (bitand(n, b)!=b, return (0)))); return (1) } \\ Rémy Sigrist, Jul 25 2019
Comments