cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David Jao

David Jao's wiki page.

David Jao has authored 1 sequences.

A365138 Genus of the quotient of the modular curve X_1(n) by the Fricke involution.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 3, 1, 2, 3, 5, 2, 6, 4, 6, 5, 10, 4, 12, 8, 10, 10, 11, 8, 20, 13, 15, 12, 24, 12, 28, 17, 20, 22, 33, 18, 34, 23, 31, 27, 45, 25, 39, 29, 42, 39, 56, 28, 62, 44, 47, 46, 59, 39, 77, 51, 65, 48, 85, 48, 93, 66, 71, 67, 89, 60, 109
Offset: 1

Author

David Jao, Aug 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A000003[n_] :=
     Length[Select[
       Flatten[#, 1] &@
        Table[{i, j, (j^2 + 4 n)/(4 i)}, {i, Sqrt[4 n/3]}, {j, 1 - i, i}],
        Mod[#3, 1] == 0 && #3 >= # &&
           GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]];
    A001617[n_] :=
      If[n < 1, 0,
       1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
          Divisors@n}] -
        Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
        Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
    A029937[n_] =
      If[n < 5, 0,
       1 + Sum[d^2*MoebiusMu[n/d]/24 - EulerPhi[d]*EulerPhi[n/d]/4, {d,
          Divisors[n]}]];
    A276183[n_] :=
     If[0 <= n <= 4,
      0, (A001617[n] + 1)/2 -
       If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]]*A000003[n]/12];
    A365138[n_] := (A029937[n] - A001617[n])/2 + A276183[n]

Formula

a(n) = (A029937(n) - A001617(n))/2 + A276183(n).