cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dimitrios Noulas

Dimitrios Noulas's wiki page.

Dimitrios Noulas has authored 1 sequences.

A321251 a(n) is the number of ways to place non-attacking knights on a 3 X n chessboard.

Original entry on oeis.org

1, 8, 36, 94, 278, 1062, 3650, 11856, 39444, 135704, 456980, 1534668, 5166204, 17480600, 58888528, 198548648, 669291696, 2258436248, 7613387344, 25676313144, 86575342536, 291991130840, 984557555352, 3320284572360, 11196209499736, 37757232570616
Offset: 0

Author

Dimitrios Noulas, Nov 01 2018

Keywords

Comments

For n = 3, a(3) = 94 is the same as A141243(3). In both cases these are 3 X 3 chessboards.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(36 x^15 - 72 x^14 - 60 x^13 + 72 x^12 - 120 x^11 + 250 x^10 + 270 x^9 - 256 x^8 - 30 x^7 - 78 x^6 - 98 x^5 + 92 x^4 + 36 x^3 - 8 x^2 - 5 x - 1)/(36 x^16 - 108 x^15 + 48 x^14 + 24 x^13 - 144 x^12 + 376 x^11 - 70 x^10 - 174 x^9 + 108 x^8 - 168 x^7 + 26 x^6 + 78 x^5 - 24 x^4 + 10 x^3 - 4 x^2 - 3 x + 1), {x, 0, 25}], x] (* Michael De Vlieger, Nov 05 2018 *)
  • Sage
    G(x)=-(36*x^15 - 72*x^14 - 60*x^13 + 72*x^12 - 120*x^11 + 250*x^10 + 270*x^9 - 256*x^8 - 30*x^7 - 78*x^6 - 98*x^5 + 92*x^4 + 36*x^3 - 8*x^2 - 5*x - 1)/(36*x^16 - 108*x^15 + 48*x^14 + 24*x^13 - 144*x^12 + 376*x^11 - 70*x^10 - 174*x^9 + 108*x^8 - 168*x^7 + 26*x^6 + 78*x^5 - 24*x^4 + 10*x^3 - 4*x^2 - 3*x + 1)
    G.series(x,1001)

Formula

G.f.: -(36*x^15 - 72*x^14 - 60*x^13 + 72*x^12 - 120*x^11 + 250*x^10 + 270*x^9 - 256*x^8 - 30*x^7 - 78*x^6 - 98*x^5 + 92*x^4 + 36*x^3 - 8*x^2 - 5*x - 1)/(36*x^16 - 108*x^15 + 48*x^14 + 24*x^13 - 144*x^12 + 376*x^11 - 70*x^10 - 174*x^9 + 108*x^8 - 168*x^7 + 26*x^6 + 78*x^5 - 24*x^4 + 10*x^3 - 4*x^2 - 3*x + 1).