cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dmitry Khomovsky

Dmitry Khomovsky's wiki page.

Dmitry Khomovsky has authored 1 sequences.

A338261 The least number of the form 2^i*3^j (i, j >= 0) which can be represented as a product of the greatest number of distinct positive integers in exactly n ways.

Original entry on oeis.org

1, 12, 72, 96, 3456, 576, 1536, 55296, 864, 9216, 56623104, 6912, 1769472, 62208, 34359738368, 746496, 110592, 93312, 3145728, 82944, 15925248, 1327104, 32614907904, 995328, 1679616, 3538944, 42467328, 1207959552, 18874368, 382205952, 286654464, 22463437455746924544, 8707129344, 1855425871872, 13060694016, 14495514624, 2717908992, 270826551115776, 17915904, 226492416
Offset: 1

Author

Dmitry Khomovsky, Oct 19 2020

Keywords

Comments

The numbers 2^i*3^j and 2^j*3^i have the same number of ways to represent them as a product of the greatest number of distinct divisors. Therefore each term of the sequence is a number of the form 2^i*3^j for which i>=j>=0.

Examples

			a(5) = 2^7*3^3 = 3456 because 3456 = 1*2*3*4*6*24 = 1*2*3*4*8*18 = 1*2*3*4*9*16 = 1*2*3*6*8*12 = 1*2*4*6*8*9 and each number of the form 2^i*3^j (i, j >= 0) less than 3456 does not have 5 representations as a product of the greatest number of distinct positive integers.
		

Crossrefs

Cf. A338159.