cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Doug Hensley

Doug Hensley's wiki page.

Doug Hensley has authored 1 sequences.

A321369 Coefficients of successive polynomials formed by iterating f(x) = -1 + 2x^2. Irregular triangle read by rows.

Original entry on oeis.org

1, -1, 2, 1, -8, 8, 1, -32, 160, -256, 128, 1, -128, 2688, -21504, 84480, -180224, 212992, -131072, 32768, 1, -512, 43520, -1462272, 25798656, -275185664, 1926299648, -9313976320, 32133218304, -80648077312, 148562247680, -200655503360
Offset: 0

Author

Doug Hensley, Nov 07 2018

Keywords

Comments

For n >= 1 subsequence of Chebyshev T polynomials, the (2^n)-th ones, per Wikipedia article on Chebyshev polynomials, in particular, the nesting property. Relevant to Putnam problem B4 of 2000.
The length of row n is 1 for n = 0 and A000051(n-1) = 2^(n-1) + 1 for n >= 1.
This irregular triangle T(n, k) appears in Table 1 (Tabelle 1), p. 156, of the book by Carl Schick as polynomials y_n(y) = -Sum_{n=0..2^(n-1)} T(n, k) * y^(2*k), for n >= 1. There y_0 = y. - Wolfdieter Lang, Nov 15 2019

Examples

			Polynomials are 1, then -1+2x^2, then -1+2(-1+2x^2)^2 = 1-8x^2+8x^4, etc. leading to array T:
n\k  0    1    2      3     4       5      6       7     8 ...
--------------------------------------------------------------
0:   1
1:  -1   2
2:   1  -8   8
3:   1  -32  160   -256   128
4:   1 -128 2688 -21504 84480 -180224 212992 -131072 32768
...
-------------------------------------------------------------------------
row n=5: 1 -512 43520 -1462272 25798656 -275185664 1926299648 -9313976320 32133218304 -80648077312 148562247680 -200655503360 196293427200 -135291469824 62277025792 -17179869184 2147483648. Reformatted and extended by _Wolfdieter Lang_, Oct 25 2019
		

References

  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6).

Crossrefs

Programs

  • Maple
    P := proc(n) local t; if n = 0 then return 1 fi;
    t := x -> orthopoly[T](2^n, x): seq(coeff(t(x), x, 2*k), k=0..2^(n-1)) end:
    seq(P(n), n=0..5); # Peter Luschny, Oct 26 2019
  • Mathematica
    h[x_] := 2 x^2 - 1;
    a[n_, k_] :=
    If[k == 0, 1, Coefficient[Expand[Nest[h, x, n]], x^(2 k)]];
    b[n_] := Table[a[n, k], {k, 0, 2^(n - 1)}];
    c[1] = {-1, 2}; c[n_] := c[n] = Join[c[n - 1], b[n]];
    sequence[n_] :=
    Module[{p, q, r}, p = 2; While[Length[c[p]] < n, p++]; c[p][[n]]]

Formula

T(0,0) = 1, T(n, k) = [x^(2*k)] T(2^n, x), with Chebyshev's T-polynomials (A053120). - Wolfdieter Lang, Oct 25 2019