A306787 Prime numbers p such that there exists an integer k such that p-1 does not divide k-1 and x -> x + x^k is a bijection from Z/pZ to Z/pZ.
31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1723, 1753, 1777, 1789, 1801, 1831, 1933, 1999, 2017
Offset: 1
Keywords
Examples
For p = 31 and k = 21, x -> x + x^k is a bijection.
Links
- Elias Caeiro, Table of n, a(n) for n = 1...212
- Problèmes du 9ème Tournoi Français des Jeunes Mathématiciennes et Mathématiciens, Problem 7 question 7, 2019 (in French).
Crossrefs
Cf. A014752.
Comments