cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Francesc Rosselló

Francesc Rosselló's wiki page.

Francesc Rosselló has authored 1 sequences.

A300445 a(n) is the maximum value of the quartet index of a bifurcating rooted tree with n leaves.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 38, 64, 106, 162, 243, 343, 479, 645, 860, 1110, 1424, 1790, 2237, 2743, 3349, 4035, 4842, 5734, 6770, 7920, 9239, 10679, 12315, 14105, 16120, 18290, 20716, 23342, 26257, 29377, 32821, 36517, 40574, 44880, 49586, 54602, 60059, 65827, 72079, 78705, 85860, 93376, 101468
Offset: 1

Author

Francesc Rosselló, Mar 06 2018

Keywords

Comments

Grows asymptotically in O(n^4).

Programs

  • Mathematica
    a[n_] := a[Floor[n/2]] + a[Ceiling[n/2]] + Binomial[Floor[n/2], 2]*Binomial[Ceiling[n/2], 2]; a[1] = 0; Array[a, 50] (* Robert G. Wilson v, Mar 06 2018 *)
  • R
    q=c(0,0,0,1)
    for (i in (4:20)){q[i]=q[floor(i/2)] + q[ceiling(i/2)] + choose(floor(i/2),2) * choose(ceiling(i/2),2)}

Formula

a(n) = a(floor(n/2)) + a(ceiling(n/2)) + binomial(floor(n/2),2) * binomial(ceiling(n/2),2) for n>3; with a(1)=a(2)=a(3)=0.