A194627 a(1)=1, a(n+1) = p(n)^2 + q(n)^2 + 1, where p(n) and q(n) are the number of prime and nonprime numbers respectively in the sequence so far.
1, 2, 3, 6, 9, 14, 21, 30, 41, 46, 59, 66, 81, 98, 117, 138, 161, 186, 213, 242, 273, 306, 341, 378, 417, 458, 501, 546, 593, 602, 651, 702, 755, 810, 867, 926, 987, 1050, 1115, 1182, 1251, 1322, 1395, 1470, 1547, 1626, 1707, 1790, 1875, 1962, 2051, 2142
Offset: 1
Examples
For n=1, we have no primes and one nonprime (a(1)=1), so a(2)=0^2+1^2+1=2. Now we have one prime (a(2)=2) and one nonprime, so a(3)=1^2+1^2+1=3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= 1: v:= 1: p:= 0: q:= 0: for i from 2 to 100 do if isprime(v) then p:= p+1 else q:= q+1 fi; v:= p^2 + q^2 + 1; R:= R,v od: R; # Robert Israel, Nov 10 2024
-
Mathematica
t = {1}; Do[ps = Count[t, ?(PrimeQ[#] &)]; AppendTo[t, ps^2 + (n - ps - 1)^2 + 1], {n, 2, 100}]; t (* _T. D. Noe, Sep 15 2011 *)
-
PARI
p=q=0;for(n=1,50,print1(k=p^2+q^2+1", ");if(isprime(k),p++,q++)) \\ Charles R Greathouse IV, Sep 16 2011