cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Guy Harari

Guy Harari's wiki page.

Guy Harari has authored 1 sequences.

A372924 a(n) = (sum_digits(n^3)-n)/3.

Original entry on oeis.org

0, 0, 2, 2, 2, 1, 1, 1, 0, 3, -3, -1, 2, 2, 1, 1, 1, 0, 0, 3, -4, -1, -1, -2, -2, -2, 0, 0, -3, -1, -7, -1, -2, -2, -5, -3, -3, -6, -4, -4, -10, -5, -5, -5, -6, -9, -6, -10, -10, -7, -14, -11, -11, -6, -9, -9, -10, -10, -13, -11, -17, -11, -12, -15, -15, -13, -10
Offset: 0

Author

Guy Harari, May 16 2024

Keywords

Comments

a(n) + floor((n+1)/3) is always a multiple of 3. - Jon E. Schoenfield, May 18 2024

Examples

			For n=42, 42^3 = 74088 has sum of digits 27 so a(42) = (27 - 42)/3 = -5.
		

Crossrefs

Cf. A004164.

Programs

  • C
    #include 
    #include 
    int32_t sumDigits(int64_t num)
    {
      int32_t sum = 0;
      while (num > 0)
      {
        sum += num % 10;
        num /= 10;
      }
      return sum;
    }
    int main()
    {
      for (int64_t i=0; i<10000; ++i)
      {
        int64_t num = i * i * i;
        int32_t sum = sumDigits(num);
        printf("%ld, ", (sum - i)/3);
      }
      return 0;
    }
  • Maple
    read("transforms"):
    A372924 := proc(n)
        (digsum(n^3)-n)/3 ;
    end proc:
    seq(A372924(n),n=0..80) ; # R. J. Mathar, Jul 03 2024
  • Mathematica
    Table[(DigitSum[n^3] - n)/3, {n, 0, 100}] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = (A004164(n)-n)/3.