cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hans H. Brüggemann

Hans H. Brüggemann's wiki page.

Hans H. Brüggemann has authored 3 sequences.

A339189 Numbers k such that {k, k+2, k+6, k+8, k+120, k+122, k+126, k+128} and either (k+30, k+32, k+36, k+38) or (k+90, k+92, k+96, k+98) are all prime.

Original entry on oeis.org

282005261771, 783976940441, 6341220302111, 31007639083781, 32488685841251, 41199341106101, 44686367247161, 62176060129361, 63866000186501, 153678400278581, 186138073442681, 241720684176611, 242151798378311, 425712041296181, 443552579937161, 557863285811471
Offset: 1

Author

Hans H. Brüggemann, Nov 27 2020

Keywords

Comments

Each term is the initial member of three prime quadruples (A007530) with the smallest possible difference of 120.

Crossrefs

A338866 Number of twins of prime quadruples < 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 5, 18, 65, 267, 1238, 6196, 33480, 187932, 1095882, 6629232
Offset: 1

Author

Hans H. Brüggemann, Nov 13 2020

Keywords

Comments

Number of twins of prime quadruples with at most n digits. A twin of prime quadruples consists of two prime quadruples with a (minimal) distance of 30.

Examples

			For n=7 the a(7)=4 solutions are: [(1006301, 1006303, 1006307, 1006309), (1006331, 1006333, 1006337, 1006339)], [(2594951, 2594953, 2594957, 2594959), (2594981, 2594983, 2594987, 2594989)], [(3919211, 3919213, 3919217, 3919219), (3919241, 3919243, 3919247, 3919249)], [(9600551, 9600553, 9600557, 9600559), (9600581, 9600583, 9600587, 9600589)].
		

Crossrefs

Extensions

a(17) corrected by Hans H. Brüggemann, Apr 11 2021

A338868 Number of triples of prime quadruples < 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 9, 28, 138, 613, 2799
Offset: 1

Author

Hans H. Brüggemann, Nov 13 2020

Keywords

Comments

Number of triples of prime quadruples with at most n digits. A triple of prime quadruples consists of three prime quadruples with a (minimal) distance of 120.

Examples

			For n=12 the a(12)=2 solutions are [(282005261771, 282005261773, 282005261777, 282005261779), (282005261801, 282005261803, 282005261807, 282005261809) , (282005261891, 282005261893, 282005261897, 282005261899)] and [(783976940441, 783976940443, 783976940447, 783976940449), (783976940471, 783976940473, 783976940477, 783976940479), (783976940531, 783976940533, 783976940537, 783976940539)].
		

Crossrefs

Extensions

a(18) corrected by Hans H. Brüggemann, May 16 2021