cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Igor Kleiner

Igor Kleiner's wiki page.

Igor Kleiner has authored 1 sequences.

A309976 Vacation Dyck paths. Discrete analog for vacation M/M/1 queue embedded chain.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 5, 4, 15, 14, 48, 49, 159, 173, 540, 616, 1869, 2211, 6565, 7994, 23335, 29092, 83756, 106489, 303093, 391815, 1104490, 1448313, 4049108, 5375784, 14922313, 20028144, 55248554, 74869485, 205394737, 280737471, 766396430, 1055627409, 2869157740, 3979545798, 10773488687, 15037617603
Offset: 0

Author

Igor Kleiner, Aug 25 2019

Keywords

Comments

The Dyck path starts in red. At any point at any height > 0, the path can take a horizontal step and its color will change to blue. The color remains blue until the first time the path visits the y=0 line, at which point it changes to red again.

Examples

			For n=0, the only path is the empty path, so a(0)=1.
For n=1 and n=2, it is impossible to construct such a path, so a(1)=a(2)=0.
		

Programs

  • PARI
    a(n) = my(z='z+O('z^(n+1))); Vec((sqrt(-4*z^2 + 1) + 1)/(z*sqrt(-4*z^2 + 1) + sqrt(-4*z^2 + 1) - z + 1))[n+1] \\ Jianing Song, Nov 21 2019

Formula

G.f: (sqrt(-4*z^2 + 1) + 1)/(z*sqrt(-4*z^2 + 1) + sqrt(-4*z^2 + 1) - z + 1).
D-finite with recurrence: n*a(n) -n*a(n-1) +6*(-n+2)*a(n-2) +3*(n-4)*a(n-3) +8*(n-3)*a(n-4) +4*(n-3)*a(n-5)=0. - R. J. Mathar, Jan 27 2020