A330615 a(0) = 1; a(1) = 1; a(n) = a(a(n - 1) mod n) + a(a(n - 2) mod n).
1, 1, 2, 3, 5, 4, 9, 7, 8, 15, 12, 6, 10, 21, 19, 14, 22, 23, 9, 20, 16, 38, 44, 52, 21, 40, 57, 24, 22, 65, 48, 26, 79, 78, 18, 17, 32, 102, 136, 41, 23, 53, 58, 26, 76, 83, 150, 47, 56, 54, 14, 22, 63, 56, 17, 24, 44, 97, 117, 253, 118, 112, 58, 171, 143, 74
Offset: 0
Keywords
Examples
n = 8: a(7) = 7, a(6) = 9, so a(8) = a(a(7) mod 8) + a(a(6) mod 8) = a(7 mod 8) + a(9 mod 8) = a(7) + a(1) = 7 + 1 = 8.
Links
- Jack Kiuttu, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A308818 (similar sequence with initial conditions a(0) = 2, a(1) = 3).
Programs
-
Mathematica
a[0] = a[1] = 1; a[n_] := a[n] = a[Mod[a[n-1], n]] + a[Mod[a[n-2], n]]; Array[a, 66, 0] (* Amiram Eldar, Dec 21 2019 *)
-
Python
# Lists terms up to given n. def a_list(n): a=[1,1] for k in range(2,n+1): a.append(a[a[-1]%k]+a[a[-2]%k]) return a
Comments