A178498 Number of Frobenius groups of order n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 3
Offset: 1
Keywords
Examples
a(18)=2, the two Frobenius groups of order 18 being -> the dihedral group D_9 of order 18 and -> the semidirect product of Z(3)xZ(3) with Z(2), where Z(2) acts by mapping every element of Z(3)xZ(3) to its inverse.
References
- J. J. Rotman, An Introduction to the Theory of Groups (4th Edition), Springer-Verlag, pp. 254-256.
Links
- James McCarron, What are the Frobenius groups of order 100?, Math StackExchange, 2018.
- Bernard Schott and Jean-Louis Tu QDV8 & H62 : Hommage à Frobenius - Frobenius 8 - Exercice 8.2 (French mathematical forum les-mathematiques.net)
- Jean-Pierre Serre Groupes finis, ENS - 1978/1979; arXiv:math/0503154 [math.GR], 2005-2008 (in French).
Programs
-
Maple
GroupTheory:-NumFrobeniusGroups( n ) # James McCarron, Aug 28 2019
Extensions
a(100) corrected by James McCarron, Aug 28 2019
Comments