cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marcus Kylén

Marcus Kylén's wiki page.

Marcus Kylén has authored 1 sequences.

A279237 Let k_i be the multiplicity of prime(i) in the prime factorization of the n-th composite number C_n, and let k_i=0 if prime(i) is not a factor of C_n. Then a(n)=1*k_1+10*k_2+100*k_3+...+10^N*k_N, where N is the index of the largest prime factor in C_n.

Original entry on oeis.org

2, 11, 3, 20, 101, 12, 1001, 110, 4, 21, 102, 1010, 10001, 13, 200, 100001, 30, 1002, 111, 5, 10010, 1000001, 1100, 22, 10000001, 100010, 103, 1011, 10002, 120, 100000001, 14, 2000, 201, 1000010, 100002, 31, 10100, 1003, 10000010, 1000000001, 112, 10000000001, 1020, 6, 100100, 10011, 1000002
Offset: 1

Author

Marcus Kylén, Dec 08 2016

Keywords

Examples

			The 1st composite number is 4 = 2^2, so a(1)=2.
The 2nd composite number is 6 = 3^1*2^1, so a(2)=11.
The 3rd composite number is 8 = 2^3, so a(3)=3.
The 4th composite number is 9 = 3^2*2^0, so a(4)=20.
The 5th composite number is 10 = 5^1*3^0*2^1, so a(5)=101.
The 6th composite number is 12 = 3^1*2^2, so a(6)=12.
The 7th composite number is 14 = 7^1*5^0*3^0*2^1, so a(7)=1001.
The 8th composite number is 15 = 5^1*3^1*2^0, so a(8)=110.
The 9th composite number is 16 = 2^4, so a(9)=4.
The 10th composite number is 18 = 3^2*2^1, so a(10)=21.
		

Crossrefs

Cf. A002808. Subset of A054841.

Programs

  • Mathematica
    Map[FromDigits@ Reverse@ Function[w, ReplacePart[#, Flatten@ Map[{PrimePi@ #1 -> #2} & @@ # &, w]] &@ ConstantArray[0, PrimePi@ Max@ w[[All, 1]]]]@ FactorInteger@ # &, Select[Range[4, 120], CompositeQ]] (* Michael De Vlieger, Dec 10 2016 *)

Formula

a(n) = 1*k_1+10*k_2+100*k_3+...+10^N*k_N, where k_i is the exponent of prime(i) in the factorization of the n-th composite number C_n, k_i=0 if prime(i) is not a factor in C_n. Also, N is the index of the largest prime factor of C_n, so that C_n = Product_{i=1..N} prime(i)^k_i.