Matt Slattery-Holmes has authored 2 sequences.
A369626
a(n) is the number of permutations of [n] which avoid the patterns 1234, 1324, and 2413.
Original entry on oeis.org
1, 1, 2, 6, 21, 75, 265, 925, 3201, 11017, 37793, 129393, 442497, 1512225, 5165953, 17643457, 60250113, 205729921, 702452225, 2398414593, 8188884993
Offset: 0
All 6 of the permutations of length 3 avoid all patterns of length 4, so a(3)=6.
Cf.
A033321 (avoiding 1234, 1324, and 1342),
A369431 (avoiding 1234, 1324, 1342, and 2413).
A369431
a(n) is the number of permutations of [n] which avoid the patterns 1234, 1324, 1342, and 2413.
Original entry on oeis.org
1, 1, 2, 6, 20, 66, 214, 688, 2206, 7070, 22660, 72634, 232830, 746352, 2392486, 7669286, 24584436, 78807122, 252621702, 809796400, 2595858574
Offset: 0
For n = 4, the valid permutations are the 20 which are not elements of the set {1234,1324,1342,2413}, hence a(4) = 20.
Cf.
A033321 (avoiding 1234, 1324, 1342),
A369626 (avoiding 1234, 1324, 2413),
A053617 (avoiding 1234, 1324),
A165530 (avoiding 1234 and 2413).