A320842 Regular triangle whose rows are the coefficients of the Dominici expansion of f(t,x) = (1/2)*(1 - t^2)^(-x) with respect to t.
1, 7, 3, 127, 123, 30, 4369, 6822, 3579, 630, 243649, 532542, 439899, 162630, 22680, 20036983, 56717781, 64697499, 37155267, 10735470, 1247400, 2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200, 343141433761, 1427877062076, 2563294235106, 2572662311496, 1558544277681, 569674791180, 116270210700, 10216206000
Offset: 1
Examples
Given D^k[f]_(b) = (d/dt [f(t)*D^(k-1)[f](t)])_t = b where D^0[f](b) = 1, then for f(t,x) = (1/2)*(1 - t^2)^(-x) where f(0) = 1/2 one obtains: D^2[f]_(0) = -x/2, D^4[f]_(0) = (x/4)*(7*x - 3), D^6[f]_(0) = -(x/8)*(127*x^2 - 123*x + 30), etc., where b is an arbitrary constant. Triangle begins: 1; 7, 3; 127, 123, 30; 4369, 6822, 3579, 630; 243649, 532542, 439899, 162630, 22680; 20036983, 56717781, 64697499, 37155267, 10735470, 1247400; 2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200; ...
Links
- Diego Dominici, Nested derivatives: a simple method for computing series expansions of inverse functions, International Journal of Mathematics and Mathematical Sciences, Volume 2003, Issue 58, Pages 3699-3715.
- Wikipedia, Student's t-distribution
Comments