A280617 Number of n-smooth Carmichael numbers.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 16, 16, 16, 16, 16, 16, 19, 19, 19, 19, 20, 20, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1
Keywords
Examples
For n = 19, the n-smooth Carmichael numbers are 571 = 3*11*17 1105 = 5*13*17 1729 = 7*13*19 There are no other Carmichael numbers that are 19-smooth, therefore a(19)=3.
Links
- Ondrej Kutal, Table of n, a(n) for n = 1..180
- Wikipedia, Carmichael number
- Wikipedia, Korselt's criterion
- Wikipedia, Smooth number
Programs
-
Maple
extend:= proc(c,p) if andmap(q -> (p-1 mod q <> 0), c) then (c, c union {p}) else c fi end proc: carm:= proc(c) local n; n:= convert(c,`*`); map(t -> n-1 mod (t-1), c) = {0} end proc: A[1]:= 0: A[2]:= 0: Primes:= []: for k from 3 to 100 do A[k]:= A[k-1]; if isprime(k) then Cands:= {{}}; for i from 1 to nops(Primes) do if (k - 1) mod Primes[i] <> 0 then Cands:= map(extend,Cands,Primes[i]) fi; od; Cands:= map(`union`,select(c -> nops(c) > 1, Cands),{k}); A[k]:= A[k] + nops(select(carm,Cands)); Primes:= [op(Primes),k]; fi od: seq(A[i],i=1..100); # Robert Israel, Mar 14 2017
-
Mathematica
a[n_] := a[n] = If[n<17, 0, a[n-1] + If[! PrimeQ[n], 0, Block[{t, k = PrimePi@n, p}, p = Prime@k; Length@ Select[ Subsets[ Prime@ Range[2, k-1], {2, k-2}], (t = Times @@ #; Mod[t-1, p-1] == 0 && And @@ IntegerQ /@ ((p t - 1)/ (#-1))) &]]]]; Array[a, 80] (* Giovanni Resta, Mar 14 2017 *)
-
Python
from collections import Counter from functools import reduce from itertools import combinations, chain from operator import mul # http://www.sympy.org import sympy as sp limit = 90 # credit: http://stackoverflow.com/a/16915734 # as proved, there are no Carmichael numbers with # less than 3 prime factors, and thus modification def powerset(iterable): xs = list(iterable) return chain.from_iterable(combinations(xs, n) for n in range(3, len(xs) + 1)) # all computed numbers will be limit-smooth def carmichael(limit): for d in powerset(sp.primerange(3, limit)): n = reduce(mul, d, 1) broke = False for p in d: if (n - 1) % (p - 1) != 0: broke = True break if not broke: yield (d[-1]) # from list of pairs of (n, number_of_integers_with_n_as_greatest_prime_factor) # creates the sequence def prefix(lst): r = [] s = 0 rpointer = 0 lstpointer = 0 while lstpointer < len(lst): while lst[lstpointer][0] > rpointer: r.append(s) rpointer += 1 s += lst[lstpointer][1] lstpointer += 1 r.append(s + lst[-1][1]) return r c = Counter(carmichael(limit)) for i, e in enumerate(prefix(sorted(c.items()))): if i > 0: print(e, end=", ")
-
Python
from math import prod from itertools import combinations from sympy import primerange def A280617(n): plist, c = list(primerange(3,n+1)), 0 for l in range(2,len(plist)+1): for q in combinations(plist,l): k = prod(q)-1 if not any(k%(r-1) for r in q): c+=1 return c # Chai Wah Wu, Sep 25 2024
Formula
a(n) = Sum_{k=1..primepi(n)} A283715(k). - Ondrej Kutal, Sep 27 2024
Comments