cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Nathaniel Benjamin

Nathaniel Benjamin's wiki page.

Nathaniel Benjamin has authored 3 sequences.

A278375 Edge-distinguishing chromatic number of ladder graph with 2n vertices.

Original entry on oeis.org

1, 3, 4, 5, 5, 6, 7, 7, 7, 8, 8, 8, 9, 9
Offset: 1

Author

Nathaniel Benjamin, Nov 19 2016

Keywords

References

  • O. Frank, F. Harary, and M. J. Plantholt, The line-distinguishing chromatic number of a graph, pp. 14, 241-252 of Ars Combinatoria (1982).

A275586 Numbers k that appear more than once in c_{m,n} for integers m >= n >= 1 where c_{m,n} = ((m+n)!(m-n+1))/((n)!(m+1)!).

Original entry on oeis.org

1, 2, 5, 9, 14, 20, 27, 28, 35, 42, 44, 48, 54, 65, 75, 77, 90, 104, 110, 119, 132, 135, 152, 154, 165, 170, 189, 208, 209, 230, 252, 273, 275, 297, 299, 324, 350, 377, 405, 429, 434, 440, 464, 495, 527, 544, 560, 572, 594, 629, 637, 663, 665, 702, 740, 779, 798, 819, 860, 902, 910, 945, 950, 989
Offset: 1

Keywords

Comments

Integers that do not appear uniquely in the Catalan triangle A009766.

Examples

			The Catalan triangle (A009766) starts:
1
1, 1
1, 2, 2
1, 3, 5,  5
1, 4, 9, 14, 14
Each entry is the sum of elements in the previous row except for those which are further right. The columns are nondecreasing, and all positive integers appear in the second column.
Since 2 appears twice in the triangle, it is in the sequence. Since 6 appears only once in the triangle, it is not in the sequence. - _Michael B. Porter_, Aug 05 2016
		

Crossrefs

Cf. A009766, A275481 (complement).

Programs

  • Python
    def remove_duplicates(values):
        output = []
        seen = set()
        for value in values:
            if value not in seen:
                output.append(value)
                seen.add(value)
        return output
    def Non_Unique_Catalan_Triangle(k):
        t = []
        t.append([])
        t[0].append(1)
        for h in range(1, k):
            t.append([])
            t[0].append(1)
        for i in range(1, k):
            for j in range(0, k):
                if i>j:
                    t[i].append(0)
                else:
                    t[i].append(t[i-1][j] + t[i][j-1])
        l = []
        for r in range(0, k):
            for s in range(0, k):
                l.append(t[r][s])
        non_unique = []
        for n in l:
            if  n <= k and n>1 and l.count(n) > 1:
                non_unique.append(n)
        non_unique = remove_duplicates(non_unique)
        print (non_unique)

A275481 Integers that appear uniquely in the Catalan triangle, A009766.

Original entry on oeis.org

3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Keywords

Comments

n appears once in c_{m,k} for integers m >= k >= 1 where c_{m,k} = ((n+k)!(n-k+1))/((k)!(n+1)!).

Crossrefs

Subsequence of A007401, which is the complement of A000096.
Cf. A009766, A275586 (complement).

Programs

  • Mathematica
    Block[{T, nn = 85}, T[n_, k_] := T[n, k] = Which[k == 0, 1, k > n, 0, True, T[n - 1, k] + T[n, k - 1]]; Rest@ Complement[Range@ nn, Union@ Flatten@ Table[T[n, k], {n, 2, nn}, {k, 2, n}]]] (* Michael De Vlieger, Feb 04 2020, after Jean-François Alcover at A009766 *)
  • Python
    #prints the unique integers less than k
    def Unique_Catalan_Triangle(k):
        t = []
        t.append([])
        t[0].append(1)
        for h in range(1, k):
            t.append([])
            t[0].append(1)
        for i in range(1, k):
            for j in range(0, k):
                if i>j:
                    t[i].append(0)
                else:
                    t[i].append(t[i-1][j] + t[i][j-1])
        l = []
        for r in range(0, k):
            for s in range(0, k):
                l.append(t[r][s])
        unique = []
        for n in l:
            if n <= k and l.count(n) == 1 :
                unique.append(n)
        print(sorted(unique))