cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Neil Bickford

Neil Bickford's wiki page.

Neil Bickford has authored 2 sequences.

A345967 Lexicographically first sequence of distinct positive integers such that the alternating partial sums p(n) = Sum_{k=1..n} -(-1)^k a(k), n >= 1, are distinct positive integers.

Original entry on oeis.org

2, 1, 5, 3, 6, 4, 7, 8, 12, 9, 11, 10, 15, 13, 17, 14, 16, 18, 22, 19, 21, 20, 25, 23, 26, 24, 28, 27, 30, 29, 32, 31, 35, 33, 36, 34, 37, 38, 42, 39, 43, 40, 44, 41, 45, 47, 46, 48, 55, 49, 51, 50, 53, 52, 57, 54, 56, 58, 62, 59, 63, 60, 64, 61, 65, 67, 66, 68, 74, 69, 72, 70, 75, 71, 73, 76, 79, 77, 80, 78
Offset: 1

Author

Eric Angelini and Neil Bickford, Jun 30 2021

Keywords

Comments

The chess rook as a windshield wiper sequence: terms with an odd index [a(1), a(3), a(5), ...] move the chess rook horizontally to the right over a(n) terms; terms with an even index [a(2), a(4), a(6), ...] move the chess rook to the left over a(n) terms; this is the lexicographically earliest sequence of positive distinct terms such that all terms of the sequence will be visited exactly once by the rook.
It turns out that both, sequence (a(n), n >= 1) and that of partial alternating sums (p(n), n >= 1), are permutations of the positive integers. - M. F. Hasler, Jul 11 2021
The inverse permutation of this sequence starts (2, 1, 4, 6, 3, 5, 7, 8, 10, 12, 11, 9, 14, 16, 13, 17, 15, 18, 20, 22, 21, ...). - M. F. Hasler, Jul 19 2021

Examples

			As a(1) = 2 has an odd index, the rook moves 2 terms to the Right on a(3) = 5;
from there the rook moves according to a(2) = 1 (1 term to the L) on a(2) = 1;
from there the rook moves according to a(3) = 5 (5 terms to the R) on a(7) = 7;
from there the rook moves according to a(4) = 3 (3 terms to the L) on a(4) = 3;
from there the rook moves according to a(5) = 6 (6 terms to the R) on a(10) = 9; etc. The rook's successive movements can be seen as the movements of a windshield wiper.
		

Crossrefs

Cf. A285471.

Programs

  • PARI
    A345967_vec(Nmax, P=0)={ my(US=[0], UP=[P], used(x,U)= setsearch(U,x) || x<=U[1], insert(x,U)= U=setunion(U,[x]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); U); vector(Nmax, n, my(s=(-1)^n); for(S=US[1]+1,oo, (used(S,US) || used(P-s*S,UP))&&next; if(s<0, my(f=1); for(PP=UP[1]+1,P+S-1, used(PP,UP) || used(P+S-PP,US) || PP==P || [f=0; break]); f && next); UP=insert(P-=s*S, UP); US=insert(s=S, US); break); s)} \\ M. F. Hasler, Jul 11 2021

Extensions

Edited and better definition from M. F. Hasler, Jul 19 2021

A342223 Product_{n>=1} 1 + a(n)*x^n = Sum_{n=-oo..oo} x^(n^2) = theta_3(x).

Original entry on oeis.org

2, 0, 0, 2, -4, 8, -16, 32, -54, 108, -184, 368, -628, 1296, -2160, 4610, -7708, 15848, -27592, 58316, -98496, 207576, -364720, 756872, -1341970, 2778300, -4918536, 10443152, -18512788, 37698416, -69273664, 145105952, -258224544, 534996900, -981494752, 2020011290, -3714566308, 7614288360
Offset: 1

Author

Neil Bickford, Mar 06 2021

Keywords

Comments

Coefficients in the power product expansion for theta_3(x), the third Jacobi theta function, described in A000122, also denoted theta_3(0, x) or theta_00(1, x).
See A147541 for additional references.
a(9) = -54 is the first term whose absolute value is not a power of 2.

Examples

			This gives 1 + 2x + 2x^4 + 2x^9 + ... = (1+2x)*(1+2x^4)*(1-4x^5)*(1+8x^6)*...
To compute this sequence's terms, start with the series expansion 1 + 2x + 2x^4 + 2x^9 + ...; this gives a(1) = 2, then divide by 1 + a(1)*x to get 1 + 2x^4 - 4x^5 + 8x^6 - 16x^7 ...; this gives a(2) = a(3) = 0 and a(4) = 2, then divide by 1 + a(4)*x to get 1 - 4x^5 + 8x^6 - 16x^7 ...; this gives a(5) = -4, then divide by 1 + a(5)*x to get 1 + 8x^6 - 16x^7 ...
		

References

  • Bill Gosper and Joerg Arndt, Discussions in Math-Fun Mailing List, circa Feb 25 2021 - Mar 2 2021.

Crossrefs

Programs

  • Mathematica
    FoldPairList[{Coefficient[#1, q^#2], #1/(1 + q^#2 Coefficient[#1, q^#2])} &, #, Range[#[[5]] - 1]] &[Series[EllipticTheta[3, 0, q], {q, 0, 100}]] (* based on code from Bill Gosper, Feb 25 2021 *)