cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Noor Kezil

Noor Kezil's wiki page.

Noor Kezil has authored 1 sequences.

A370373 T(n, k) is the total number of non-symmetric peaks in all partitions of n with exactly k blocks, n >= 4, 3 <= k <= n-1.

Original entry on oeis.org

1, 6, 3, 27, 30, 6, 108, 205, 90, 10, 405, 1188, 870, 210, 15, 1458, 6279, 6888, 2730, 420, 21, 5103, 31306, 48622, 28308, 7070, 756, 28, 17496, 149985, 318726, 256914, 92988, 16002, 1260, 36, 59049, 698256, 1984950, 2136150, 1054305, 260316, 32760, 1980, 45, 196830
Offset: 4

Author

Noor Kezil, Jun 07 2024

Keywords

Examples

			The triangle T(n, k) begins:
   4|    1
   5|    6      3
   6|   27     30      6
   7|  108    205     90     10
   8|  405   1188    870    210     15
   9| 1458   6279   6888   2730    420     21
  10| 5103  31306  48622  28308   7070    756   28
.
T(5,3) represents the partitions of the set {1,2,3,4,5} into 3 blocks:
The canonical form of a set partition of [n] is an n-tuple indicating the block in which each integer occurs. The non-symmetric peaks in the canonical sequential form are listed:
  (1, 2, 3, 1, 1) -> 1 non-symmetric peak,  (2, 3, 1)
  (1, 2, 3, 1, 2) -> 1 non-symmetric peak,  (2, 3, 1)
  (1, 2, 3, 1, 3) -> 1 non-symmetric peak,  (2, 3, 1)
  (1, 2, 2, 3, 1) -> 1 non-symmetric peak,  (2, 3, 1)
  (1, 1, 2, 3, 1) -> 1 non-symmetric peak,  (2, 3, 1)
  (1, 2, 1, 3, 2) -> 1 non-symmetric peak,  (1, 3, 2)
		

Crossrefs

Cf. A008277 (Stirling2).
Cf. A373288.
Cf. A027471 (1st column), A033487 (subdiagonal).

Programs

  • Maple
    T := (n, k) -> binomial(k-1, 2) * Stirling2(n-1, k) + 2 * add(binomial(j, 3) * add(j^(i-3) * Stirling2(n-i, k), i=3..n-k), j = 3..k): seq(print(seq(T(n, k), k = 3..n-1)), n = 4..10);
  • Mathematica
    T[n_, k_] := Binomial[k-1, 2] * StirlingS2[n-1, k] + 2 * Sum[Binomial[j, 3] * Sum[j^(i-3) * StirlingS2[n-i, k], {i, 3, n-k}], {j, 3, k}];Table[T[n, k], {n, 4, 12}, {k, 3, n-1}]
  • PARI
    T(n, k) = binomial(k-1, 2) * stirling(n-1, k, 2) + 2 * sum(j=3, k, binomial(j, 3) * sum(i=3, n-k, j^(i-3) * stirling(n-i, k, 2)));

Formula

T(n,k) = binomial(k-1, 2) * Stirling2(n-1, k) + 2 * Sum_{j=3..k} binomial(j, 3) * Sum_{i=3..n-k} j^(i-3) * Stirling2(n-i, k).