cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Oleg Zyakun

Oleg Zyakun's wiki page.

Oleg Zyakun has authored 13 sequences. Here are the ten most recent ones:

A164061 Prime p1 of the form a^b - c^d = p1, where a, b, c, d are primes and a + b + c + d = p2, where p2 (A164062) is also prime.

Original entry on oeis.org

2, 3, 5, 19, 139, 149, 311, 6827, 7949, 27743, 29663, 29759, 31249, 101281, 124213, 130729, 135271, 169691, 177019, 361967, 508009, 568439, 815351
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			3^3 - 5^2 = 2, 3 + 3 + 5 + 2 = 13; 2^7 - 5^3 = 3, 2 + 7 + 5 + 3 = 17; 2^5 - 3^3 = 5, 2 + 5 + 3 + 3 = 13; 3^3 - 2^3 = 19, 3 + 3 + 2 + 3 = 11;
		

A164062 Prime p2 of the sequence A164061: a^b - c^d = p1 (A164061), where a, b, c, d are primes and a + b + c + d = p2, where p2 is also prime.

Original entry on oeis.org

13, 17, 13, 11, 23, 29, 17, 29, 23, 47, 43, 41, 103, 53, 41, 29, 97, 89, 23, 101, 227, 127, 29
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			3^3 - 5^2 = 2, 3 + 3 + 5 + 2 = 13; 2^7 - 5^3 = 3, 2 + 7 + 5 + 3 = 17; 2^5 - 3^3 = 5, 2 + 5 + 3 + 3 = 13; 3^3 - 2^3 = 19, 3 + 3 + 2 + 3 = 11;
		

A164063 Prime p1 of the form a^b - c^d = p1, where a, b, c, d are primes and a + b + c + d = p2, where p2 (A164064) is prime and conc(abcd) = p3 (concatenation of a, b, c, d) is also prime (A164065).

Original entry on oeis.org

3, 19, 27743, 29663, 101281, 130729, 815351
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			2^7 - 5^3 = 3, 2 + 7 + 5 + 3 = 17, conc (abcd) = 2753; 3^3 - 2^3 = 19, 3 + 3 + 2 + 3 = 11, conc (abcd) = 3323; 31^3 - 2^11 = 27743, 31 + 3 + 2 + 11 = 47, conc (abcd) = 313211; 31^3 - 2^7 = 29663, 31 + 3 + 2 + 7 = 43, conc (abcd) = 31327;
		

A164064 Prime p2 of the sequence A164063: a^b - c^d = p1 (A164063), where a, b, c, d are primes and a + b + c + d = p2, where p2 is prime and conc(abcd) = p3 (concatenation of a, b, c , d) is also prime (A164065).

Original entry on oeis.org

17, 11, 47, 43, 53, 29, 29
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			2^7 - 5^3 = 3, 2 + 7 + 5 + 3 = 17, conc (abcd) = 2753; 3^3 - 2^3 = 19, 3 + 3 + 2 + 3 = 11, conc (abcd) = 3323; 31^3 - 2^11 = 27743, 31 + 3 + 2 + 11 = 47, conc (abcd) = 313211; 31^3 - 2^7 = 29663, 31 + 3 + 2 + 7 = 43, conc (abcd) = 31327;
		

A164065 Prime p3 of the sequence A164063: a^b - c^d = p1 (A164063), where a, b, c, d are primes and a + b + c + d = p2 (A164064), where p2 is prime and conc(abcd) = p3 (concatenation of a, b, c , d) is also prime.

Original entry on oeis.org

2753, 3323, 313211, 31327, 217313, 21773, 77213
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			2^7 - 5^3 = 3, 2 + 7 + 5 + 3 = 17, conc (abcd) = 2753; 3^3 - 2^3 = 19, 3 + 3 + 2 + 3 = 11, conc (abcd) = 3323; 31^3 - 2^11 = 27743, 31 + 3 + 2 + 11 = 47, conc (abcd) = 313211; 31^3 - 2^7 = 29663, 31 + 3 + 2 + 7 = 43, conc (abcd) = 31327;
		

A164074 Prime p of the form a^b + c^d = p, where a, b, c, d are also primes.

Original entry on oeis.org

13, 17, 29, 31, 41, 53, 59, 137, 157, 173, 251, 293, 347, 1373, 1459, 2213, 3253, 4493, 5333, 6863, 6961, 8219, 8317, 9413, 10613, 11317, 16811, 18773, 20359, 24421, 24517, 26437, 26573, 27893, 37253, 54293, 70969, 76733, 78157, 80173, 85853
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			2^2 + 3^2 = 13; 2^3 + 3^2 = 17; 2^2 + 5^2 = 29; 3^3 + 2^2 = 31;
		

A164075 Prime p1 of the form a^b + c^d = p1, where a, b, c, d are primes and a + b + c + d = p2, where p2 (A164076) is also prime.

Original entry on oeis.org

29, 53, 59, 173, 251, 293, 1373, 1459, 2213, 3253, 4493, 5333, 8317, 9413, 10613, 20359, 24517, 27893, 37253, 54293, 76733, 78157, 94253, 103951, 120413, 139133, 169243, 205507, 253013, 351653, 366103, 368453, 375773, 458333, 524413, 548677
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			2^2 + 5^2 = 29, 2 + 2 + 5 + 2 = 11; 2^2 + 7^2 = 53, 2 + 2 + 7 + 2 = 13; 2^5 + 3^3 = 59, 2 + 5 + 3 + 3 = 13; 2^2 + 13^2 = 173, 2 + 2 + 13 + 2 = 19;
		

A164076 Prime p2 of the sequence A164075: a^b + c^d = p1 (A164075), where a, b, c, d are primes and a + b + c + d = p2, where p2 is also prime.

Original entry on oeis.org

11, 13, 13, 19, 13, 23, 43, 23, 53, 19, 73, 79, 23, 103, 109, 41, 41, 173, 199, 239, 283, 19, 313, 59, 353, 379, 31, 71, 509, 599, 89, 613, 619, 683, 29, 53, 829, 37, 101, 859
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			2^2 + 5^2 = 29, 2 + 2 + 5 + 2 = 11; 2^2 + 7^2 = 53, 2 + 2 + 7 + 2 = 13; 2^5 + 3^3 = 59, 2 + 5 + 3 + 3 = 13; 2^2 + 13^2 = 173, 2 + 2 + 13 + 2 = 19;
		

A164077 Prime p1 of the form a^b + c^d = p1, where a, b, c, d are primes and a + b + c + d = p2, where p2 (A164078) is prime and conc(abcd) = p3 (concatenation of a, b, c , d) is also prime (A164079).

Original entry on oeis.org

3253, 24517, 78157, 366103, 548677, 705097, 1030429, 1229257, 5735467, 6438391, 12221371, 17498881, 19618243, 74084347, 118370899, 263374849, 270840151, 286199371, 410180599, 418195621, 418719781, 529483321, 565609411, 698388391
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			5^5 + 2^7 = 3253, 5 + 5 + 2 + 7 = 19, conc (abcd) = 5527; 29^3 + 2^7 = 24517, 29 + 3 + 2 + 7 = 41, conc (abcd) = 29327; 2^5 + 5^7 = 78157, 2 + 5 + 5 + 7 = 19, conc (abcd) = 2557; 2^13 + 71^3 = 366103, 2 + 13 + 71 + 3 = 89, conc (abcd) = 89; 213713
		

Extensions

Extended and edited by Charles R Greathouse IV, Apr 27 2010

A164078 Prime p2 of the sequence A164077: a^b + c^d = p1 (A164077), where a, b, c, d are primes and a + b + c + d = p2, where p2 is prime and conc(abcd) = p3 (concatenation of a, b, c , d) is also prime (A164079).

Original entry on oeis.org

19, 41, 19, 89, 53, 101
Offset: 1

Author

Oleg Zyakun, Aug 12 2009

Keywords

Examples

			5^5 + 2^7 = 3253, 5 + 5 + 2 + 7 = 19, conc (abcd) = 5527; 29^3 + 2^7 = 24517, 29 + 3 + 2 + 7 = 41, conc (abcd) = 29327; 2^5 + 5^7 = 78157, 2 + 5 + 5 + 7 = 19, conc (abcd) = 2557; 2^13 + 71^3 = 366103, 2 + 13 + 71 + 3 = 89, conc (abcd) = 89; 213713