A371957 Positive integers k such that the parametric Pell-type equation x^2 - m*x*y + y^2 = - m^2 - k has no integer solutions (x,y) for all integers m >= 1, excluding the cases k==1 (mod 4), k==3 (mod 9), and k==6 (mod 9).
4, 8, 14, 18, 19, 26, 38, 44, 47, 54, 63, 68, 74, 79, 98, 99, 103, 110, 118, 119, 124, 126, 134, 143, 144, 154, 158, 166, 179, 180, 194, 198, 199, 206, 207, 208, 214, 215, 224, 234, 238, 239, 250, 254, 263, 274, 278, 279, 287, 299, 306, 308, 314, 319, 324, 326, 334, 342, 351, 359, 362, 368, 374, 378, 383, 404, 406, 414, 418
Offset: 1
Keywords
References
- N. Osipov, A Pell-Type Diophantine Equation, Amer. Math. Monthly, 128 (2021), p. 858-860.
- N. Osipov, A Pell-type Equation in Disguise, Amer. Math. Monthly, 129 (2022), p. 389-390.
Links
- Orlov Nikita, Pascal program.
Crossrefs
Cf. A370721 (for the equation x^2-m*x*y+y^2=m^2+k)
Programs
-
Maple
check:=proc(k) local flag,m,y,mm,yy; flag:=0; for m from 3 to 2*k+8 while flag=0 do for y from 1 to evalf(sqrt((m^2+k)/(m-2)))+1 while flag=0 do if issqr((m^2-4)*y^2-4*(m^2+k))=true then flag:=1; mm:=m; yy:=y; fi; od; od; if flag=0 then return 0 else return [mm,yy]; fi; end proc: for k from 1 to 2000 do if k mod 4<>1 and k mod 9<>3 and k mod 9<>6 and check(k)=0 then print(k); fi; od:
-
Pascal
// see link
Extensions
Edited by Nikolay Osipov, Jun 11 2024
Comments