Paolo Franchi has authored 4 sequences.
A269965
Start with a square; at each stage add a square at each expandable vertex so that the ratio of the side of the squares at stage n+1 and at stage n is the golden ratio phi=0.618...; a(n) is the number of squares in a portion of the n-th stage (see below).
Original entry on oeis.org
1, 3, 10, 26, 63, 145, 332, 760, 1745, 4007, 9198, 21102, 48403, 111021, 254656, 584132, 1339893, 3073459, 7049906, 16171066, 37093175, 85084313, 195166404, 447672720, 1026871705, 2355438303, 5402904310, 12393181766, 28427480091, 65206953349, 149571708488
Offset: 5
-
RecurrenceTable[{a[n + 1] ==
2 a[n] + a[n - 1] - 2 a[n - 2] + 2 a[n - 3] + 2 a[n - 4] + 5,
a[5] == 1, a[6] == 3, a[7] == 10, a[8] == 26, a[9] == 63}, a, {n, 5,
30}]
RecurrenceTable[{a[n + 1] ==
3 a[n] - a[n - 1] - 3 a[n - 2] + 4 a[n - 3] - 2 a[n - 5],
a[5] == 1, a[6] == 3, a[7] == 10, a[8] == 26, a[9] == 63,
a[10] == 145}, a, {n, 5, 30}]
-
Vec(x^5*(1+2*x^2+2*x^3)/((1-x)*(1+x)*(1-3*x+2*x^2-2*x^4)) + O(x^50)) \\ Colin Barker, Mar 09 2016
A269964
Start with a square; at each stage add a square at each expandable vertex so that the ratio of the side of the squares at stage n+1 and at stage n is the golden ratio phi=0.618...; a(n) is the number of squares in a portion of the n-th stage (see below).
Original entry on oeis.org
1, 1, 3, 5, 11, 23, 53, 121, 279, 639, 1465, 3357, 7699, 17659, 40509, 92921, 213143, 488903, 1121441, 2572357, 5900475, 13534515, 31045477, 71212113, 163346335, 374683807, 859449705, 1971405725, 4522010435, 10372587467, 23792640941, 54575559337
Offset: 1
-
RecurrenceTable[{a[n + 1] ==
2 a[n] + a[n - 1] - 2 a[n - 2] + 2 a[n - 3] + 2 a[n - 4] - 2,
a[1] == 1, a[2] == 1, a[3] == 3, a[4] == 5, a[5] == 11}, a, {n, 1,
30}]
RecurrenceTable[{a[n + 1] ==
3 a[n] - a[n - 1] - 3 a[n - 2] + 4 a[n - 3] - 2 a[n - 5],
a[1] == 1, a[2] == 1, a[3] == 3, a[4] == 5, a[5] == 11,
a[6] == 23}, a, {n, 1, 30}]
-
Vec(x*(1-2*x+x^2-2*x^4)/((1-x)*(1+x)*(1-3*x+2*x^2-2*x^4)) + O(x^50)) \\ Colin Barker, Mar 09 2016
A269963
Start with a square; at each stage add a square at each expandable vertex so that the ratio of the side of the squares at stage n+1 and at stage n is the golden ratio phi=0.618...; a(n) is the number of squares in a portion of the n-th stage (see below).
Original entry on oeis.org
1, 2, 7, 16, 37, 82, 187, 428, 985, 2262, 5191, 11904, 27301, 62618, 143635, 329476, 755761, 1733566, 3976447, 9121160, 20922109, 47991138, 110082091, 252506316, 579198985, 1328566598, 3047466007, 6990277456, 16034298325, 36779473258, 84364755139
Offset: 1
-
RecurrenceTable[{a[n + 1] ==
2 a[n] + a[n - 1] - 2 a[n - 2] + 2 a[n - 3] + 2 a[n - 4],
a[1] == 1, a[2] == 2, a[3] == 7, a[4] == 16, a[5] == 37}, a, {n, 1,
30}]
-
Vec(x*(1+2*x^2+2*x^3)/((1+x)*(1-3*x+2*x^2-2*x^4)) + O(x^50)) \\ Colin Barker, Mar 09 2016
A269962
Start with a square; at each stage add a square at each expandable vertex so that the ratio of the side of the squares at stage n+1 and at stage n is the golden ratio phi=0.618...; a(n) is the number of squares at n-th stage.
Original entry on oeis.org
1, 5, 17, 45, 105, 237, 537, 1229, 2825, 6493, 14905, 34189, 78409, 179837, 412505, 946221, 2170473, 4978653, 11420025, 26195213, 60086537, 137826493, 316146457, 725176813, 1663410601, 3815531165, 8752065209, 20075486925, 46049151561, 105627543165
Offset: 1
-
RecurrenceTable[{a[n + 1] ==
4 a[n] - 5 a[n - 1] + 2 a[n - 2] + 2 a[n - 3] - 2 a[n - 4],
a[1] == 1, a[2] == 5, a[3] == 17, a[4] == 45, a[5] == 105}, a, {n,
1, 30}]
RecurrenceTable[{a[n + 1] ==
2 a[n] + a[n - 1] - 2 a[n - 2] + 2 a[n - 3] + 2 a[n - 4] + 4,
a[1] == 1, a[2] == 5, a[3] == 17, a[4] == 45, a[5] == 105}, a, {n,
1, 30}]
-
Vec(x*(1+x)*(1+2*x^2-2*x^3)/((1-x)*(1-3*x+2*x^2-2*x^4)) + O(x^50)) \\ Colin Barker, Mar 09 2016
Comments