A334629 Smallest number that can be obtained by starting with 1 and applying "Choix de Bruxelles (version 2)" (see A323460) n times without backtracking or repeating.
1, 2, 4, 8, 16, 13, 23, 17, 14, 7, 6, 3, 99, 369, 999, 1999, 9879, 19979
Offset: 0
Examples
a(0)-a(4) = 1,2,4,8,16 by applying 0,1,2,3,4 steps: 1->2->4->8->16. a(5) = 13 by applying 5 steps: 1->2->4->8->16->13 (halve the 6 in 16). a(11) = 3 by applying 11 steps to reach 3 from 1.
Links
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
Formula
A323454(a(n)) = n by definition.
Extensions
a(17) from Michael S. Branicky, Oct 01 2024