cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rajesh Bhowmick

Rajesh Bhowmick's wiki page.

Rajesh Bhowmick has authored 2 sequences.

A164967 Sequential primes built off of 1.

Original entry on oeis.org

1, 13, 137, 13711, 1371113, 137111329, 13711132937, 13711132937113, 13711132937113307, 13711132937113307401, 13711132937113307401463, 13711132937113307401463509, 13711132937113307401463509541, 13711132937113307401463509541701
Offset: 1

Author

Rajesh Bhowmick, Jan 14 2012

Keywords

Comments

Begin with a 'seed' number, in this case a(1) = 1. Then a(n) is the concatenation of a(n-1) and some prime greater than any prime previously used to create a new prime number. Such a sequence is called a 'sequential prime' sequence.

Crossrefs

Cf. A074336.

Programs

  • Mathematica
    p = 3; f[n_] := Block[{}, While[q = n*10^Floor[1 + Log10[p]] + p; !PrimeQ[q], p = NextPrime[p]]; p = NextPrime[p]; q]; NestList[f, 1, 14] (* Robert G. Wilson v, Jan 14 2012 *)

Extensions

Edited and extended by Robert G. Wilson v, Jan 14 2012

A203024 Numbers a = b + c where a, b, and c contain the same decimal digits.

Original entry on oeis.org

0, 954, 2961, 4932, 5013, 5022, 5031, 5238, 5823, 6147, 6417, 7614, 7641, 8235, 8523, 9045, 9108, 9180, 9324, 9504, 9540, 9594, 9612, 9684, 9774, 9864, 9954, 20961, 21150, 21501, 24831, 24921, 25011, 26901, 27810, 28107, 28314, 29016, 29214, 29610, 29691, 29961
Offset: 1

Author

Rajesh Bhowmick, Dec 28 2011

Keywords

Comments

987654321 and 9876543210 are members (987654321 = 123456789 + 864197532, 9876543210 = 1234567890 + 8641975320).

Examples

			954 is in the sequence since 954 = 459 + 495.
		

Programs

  • PARI
    is(n)=my(v=vecsort(Vec(Str(n))));for(b=eval(concat(v)), n\2, if(vecsort(Vec(Str(b)))==v && vecsort(Vec(Str(n-b)))==v, return(1)));0 \\ Charles R Greathouse IV, Dec 28 2011

Extensions

a(2)-a(42) from Charles R Greathouse IV, Dec 28 2011