A383046 Smallest initial value for shortcut form of the Collatz function (3x+1)/2 sequence that begins with exactly n-1 increases and decreases once before the last increment.
11, 7, 175, 287, 2239, 4223, 19199, 12799, 52223, 559103, 372735, 5840895, 9486335, 6324223, 48955391, 32636927, 1095499775, 730333183, 11940134911, 19413336063, 35848716287, 298777051135, 932192452607, 621461635071, 6278369771519, 4185579847679
Offset: 3
Keywords
Examples
For n=4, the residue class (mod 2^7) or smallest starting x = a(4) = 7 has trajectory 7 - 11 -> 17 -> 26 -> 13-> 20 -> 10 -> 5 \-----------/ \--/ \------/ n-1=3 increases 1 decreases and 1 increases decreases to < initial For x = 135 = a(4) + 128 = 7 + 128 has trajectory 135 - 203 -> 305 -> 458 -> 229-> 344 -> 172 -> 84 \-----------/ \--/ \------/ n-1=3 increases 1 decreases and 1 increases decreases to < initial
Crossrefs
Cf. A381707.
Programs
-
PARI
a(n)={my(y=floor(1+n*log(3)/log(2))+1-n); 2^(n-1)*lift(Mod(1/3^n, 2^y)) - 1}
Formula
a(n) = 2^(n-1) * (3^(-n) mod 2^(floor(1+n*log2(3))+1-n)) - 1.
Comments