cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Violeta Hernández Palacios

Violeta Hernández Palacios's wiki page.

Violeta Hernández Palacios has authored 1 sequences.

A334114 Decimal expansion of volume of a sphenomegacorona (J88) with each edge of unit length.

Original entry on oeis.org

1, 9, 4, 8, 1, 0, 8, 2, 2, 8, 8, 5, 9, 4, 7, 2, 8, 0, 3, 2, 7, 0, 6, 7, 6, 3, 9, 0, 0, 1, 6, 6, 7, 6, 4, 1, 4, 1, 8, 4, 7, 8, 0, 8, 1, 3, 5, 6, 2, 7, 4, 6, 3, 7, 5, 5, 3, 6, 7, 6, 3, 3, 7, 6, 0, 0, 9, 5, 6, 2, 3, 8, 5, 0, 4, 7, 1, 5, 1, 9, 6, 4, 7, 1, 1, 7, 4
Offset: 1

Author

Keywords

Comments

A sphenomegacorona is one of the 92 regular-faced non-isogonal convex polyhedra first enumerated by Norman W. Johnson. It's built out of 2 squares and 12 equilateral triangles.
This number is algebraic, of unknown degree.
It appears that the minimal polynomial is 521578814501447328359509917696*x^32 - 985204427391622731345740955648*x^30 - 16645447351681991898880656015360*x^28 + 79710816694053483249372512649216*x^26 - 152195045391070538203422101864448*x^24 + 156280253448056209478031589244928*x^22 - 96188116617075838858708654227456*x^20 + 30636368373570166303441645731840*x^18 + 5828527077458909552923002273792*x^16 - 8060049780765551057159394951168*x^14 + 1018074792115156107372011716608*x^12 + 35220131544370794950945931264*x^10 + 327511698517355918956755959808*x^8 - 116978732884218191486738706432*x^6 + 10231563774949176791703149568*x^4 - 366323949299263261553952192*x^2 + 3071435678740442112675625. - Joerg Arndt, Apr 16 2020

Examples

			1.94810822885947280327067639...
		

Crossrefs

Volumes of other Johnson solids: A179552, A179587, A179590.

Programs

  • Mathematica
    k := Root[-23 - 56 x + 200 x^2 + 304 x^3 - 776 x^4 + 240 x^5 +
       2000 x^6 - 5584 x^7 - 3384 x^8 + 17248 x^9 + 2464 x^10 -
       24576 x^11 + 1568 x^12 + 17216 x^13 - 3712 x^14 - 4800 x^15 +
       1680 x^16, 2];
    {{0, 1/2, Sqrt[1 - k^2]}, {k, 1/2, 0}, {0, Sqrt[(3/4 - k^2)/(1 - k^2)] + 1/2, (1/2 - k^2)/Sqrt[1 - k^2]}, {1/2, 0, -Sqrt[1/2 + k - k^2]}, {0, (Sqrt[3/4 - k^2] (2 k^2 - 1))/((k^2 - 1) Sqrt[1 - k^2]) + 1/2, (k^4 - 1/2)/(1 - k^2)^(3/2)}};
    v = Union[%, {1, -1, 1}*# & /@ %, {-1, 1, 1}*# & /@ %, {-1, -1,
      1}*# & /@ %];
    f := {{2, 3, 12, 11}, {2, 3, 10, 9}, {3, 12, 5}, {3, 10, 5}, {12, 5,
      7}, {10, 5, 7}, {7, 12, 8}, {7, 10, 1}, {12, 8, 11}, {10, 1,
      9}, {8, 1, 7}, {8, 1, 6}, {8, 11, 6}, {1, 9, 6}, {11, 6, 4}, {9,
      6, 4}, {4, 11, 2}, {4, 9, 2}};
    RealDigits[N[Volume[Polyhedron[v, f]], 20000]][[1]]