A000014 Number of series-reduced trees with n nodes.
0, 1, 1, 0, 1, 1, 2, 2, 4, 5, 10, 14, 26, 42, 78, 132, 249, 445, 842, 1561, 2988, 5671, 10981, 21209, 41472, 81181, 160176, 316749, 629933, 1256070, 2515169, 5049816, 10172638, 20543579, 41602425, 84440886, 171794492, 350238175, 715497037, 1464407113
Offset: 0
Examples
G.f. = x + x^2 + x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + 10*x^10 + ... The star graph with n nodes (except for n=3) is a series-reduced tree. For n=6 the other series-reduced tree is shaped like the letter H. - _Michael Somos_, Dec 19 2014
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 284.
- D. G. Cantor, personal communication.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Fig. 3.3.3.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Matthew Parker, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], 30 June 2014.
- Ira M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv:2305.03157 [math.CO], 2023.
- James Grime and Brady Haran, The problem in Good Will Hunting, 2013 (Numberphile video).
- Frank Harary and Geert Prins, The number of homeomorphically irreducible trees and other species, Acta Math., 101 (1959), 141-162.
- F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503.
- F. Harary, R. W. Robinson and A. J. Schwenk, Corrigenda: Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A 41 (1986), p. 325.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes.
- B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes. [Cached copy of top page only, pdf file, no active links, with permission]
- Matthew Parker, The first 2000 terms (7-Zip compressed file)
- A. J. Schwenk, Letter to N. J. A. Sloane, Aug 1972
- N. J. A. Sloane, Illustration of initial terms
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Series-Reduced Tree
- Index entries for sequences related to trees
- Index entries for "core" sequences
Crossrefs
Programs
-
Maple
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}: G001678 := (convert(gfseries(sys,unlabeled,x) [S(x)], polynom)) * x^2: G0temp := G001678 + x^2: G059123 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x): G000014 := ((x-1)/x) * G059123 + ((1+x)/x^2) * G0temp - (1/x^2) * G0temp^2: A000014 := 0,seq(coeff(G000014,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
-
Mathematica
a[n_] := If[n<1, 0, A = x/(1-x^2) + x*O[x]^n; For[k=3, k <= n-1, k++, A = A/(1 - x^k + x*O[x]^n)^SeriesCoefficient[A, k]]; s = ((Normal[A] /. x -> x^2) + O[x]^(2n))*(1-x) + A*(2-A)*(1+x); SeriesCoefficient[s, n]/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2016, adapted from PARI *)
-
PARI
{a(n) = my(A); if( n<1, 0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (subst(A, x, x^2) * (1 - x) + A * (2 - A) * (1 + x)) / 2, n))}; /* Michael Somos, Dec 19 2014 */
Formula
G.f.: A(x) = ((x-1)/x)*f(x) + ((1+x)/x^2)*g(x) - (1/x^2)*g(x)^2 where f(x) is g.f. for A059123 and g(x) is g.f. for A001678. [Harary and E. M. Palmer, p. 62, Eq. (3.3.10) with extra -(1/x^2)*Hbar(x)^2 term which should be there according to eq.(3.3.14), p. 63, with eq.(3.3.9)]. [corrected by Wolfdieter Lang, Jan 09 2001]
a(n) ~ c * d^n / n^(5/2), where d = A246403 = 2.189461985660850..., c = 0.684447272004914061023163279794145361469033868145768075109924585532604582794... - Vaclav Kotesovec, Aug 25 2014
Comments