Original entry on oeis.org
0, 1, 2, 2, 3, 4, 6, 8, 12, 17, 27, 41, 67, 109, 187, 319, 568, 1013, 1855, 3416, 6404, 12075, 23056, 44265, 85737, 166918, 327094, 643843, 1273776, 2529846, 5045015, 10094831, 20267469, 40811048, 82413473, 166854359, 338648851, 688887026, 1404384063, 2868791176, 5871429462, 12038444069
Offset: 0
A001678
Number of series-reduced planted trees with n nodes.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, 7546, 15221, 30802, 62620, 127702, 261335, 536278, 1103600, 2276499, 4706985, 9752585, 20247033, 42110393, 87733197, 183074638, 382599946, 800701320, 1677922740, 3520581954
Offset: 0
--------------- Examples (i=internal,e=external): ---------------------------
|.n=2.|..n=4..|..n=5..|...n=6.............|....n=7..........................|
|.....|.......|.......|.............e...e.|................e.e.e......e...e.|
|.....|.e...e.|.e.e.e.|.e.e.e.e...e...i...|.e.e.e.e.e...e....i....e.e...i...|
|..e..|...i...|...i...|....i........i.....|.....i..........i..........i.....|
|..e..|...e...|...e...|....e........e.....|.....e..........e..........e.....|
-----------------------------------------------------------------------------
G.f. = x^2 + x^4 + x^5 + 2*x^6 + 3*x^7 + 6*x^8 + 10*x^9 + 19*x^10 + ...
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(8) = 6 rooted trees with 7 nodes as described in the comment are:
: level sequence out-degrees (dots for zeros)
: 1: [ 0 1 2 3 3 2 1 ] [ 2 2 2 . . . . ]
: O--o--o--o
: .--o
: .--o
: .--o
:
: 2: [ 0 1 2 2 2 2 1 ] [ 2 4 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 3: [ 0 1 2 2 2 1 1 ] [ 3 3 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 4: [ 0 1 2 2 1 2 2 ] [ 2 2 . . 2 . . ]
: O--o--o
: .--o
: .--o--o
: .--o
:
: 5: [ 0 1 2 2 1 1 1 ] [ 4 2 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 6: [ 0 1 1 1 1 1 1 ] [ 6 . . . . . . ]
: O--o
: .--o
: .--o
: .--o
: .--o
: .--o
:
(End)
From _Gus Wiseman_, Jan 20 2020: (Start)
The a(2) = 1 through a(9) = 10 unlabeled lone-child-avoiding rooted trees with n - 1 nodes (empty n = 3 column shown as dot) are:
o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
(o(oo)) (o(ooo)) (o(oooo)) (o(ooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
(ooo(oo)) (ooo(ooo))
((oo)(oo)) (oooo(oo))
(o(o(oo))) ((oo)(ooo))
(o(o(ooo)))
(o(oo)(oo))
(o(oo(oo)))
(oo(o(oo)))
(End)
- D. G. Cantor, personal communication.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 525.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
- F. Harary and G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math., 101 (1959), 141-162.
- F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503.
- F. Harary, R. W. Robinson and A. J. Schwenk, Corrigenda: Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A 41 (1986), p. 325.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 404
- Marko Riedel, Generating functions of unordered rooted trees with n nodes where nodes cannot have out-degree 1, classified by the number of leaves, using the Polya Enumeration Theorem and the exponential formula.
- Eric Weisstein's World of Mathematics, Series-reduced tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Unlabeled rooted trees are counted by
A000081.
Topologically series-reduced rooted trees are counted by
A001679.
Labeled lone-child-avoiding rooted trees are counted by
A060356.
Labeled lone-child-avoiding unrooted trees are counted by
A108919.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
Singleton-reduced rooted trees are counted by
A330951.
-
with (powseries): with (combstruct): n := 30: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}: A001678 := 1,0,1,seq(count([S, sys, unlabeled],size=i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
# second Maple program:
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
d*a(d+1), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n<2, 0,
`if`(n=2, 1, b(n-2)-a(n-1)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 02 2014
-
b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*a[d+1], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n < 2, 0, If[n == 2, 1, b[n-2] - a[n-1]]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 24 2014, after Alois P. Heinz *)
terms = 38; A[] = 0; Do[A[x] = (x^2/(1+x))*Exp[Sum[A[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 12 2018 *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[If[n<=1,0,Length[Select[urt[n-1],FreeQ[#,{}]&]]],{n,0,10}] (* _Gus Wiseman, Jan 20 2020 *)
-
(a(n) = if( n<4, n==2, T(n-2, n-3))); /* where */ {T(n, k) = if( n<1 || k<1, (n==0) && (k>=0), sum(j=1, k, sum(i=1, n\j, T(n-i*j, min(n-i*j, j-1)) * binomial( a(j+1) + i-1, i))))}; /* Michael Somos, Jun 04 2002 */
-
{a(n) = local(A); if( n<3, n==2, A = x / (1 - x^2) + O(x^n); for(k=3, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */
A001679
Number of series-reduced rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653, 3577169927
Offset: 0
G.f. = 1 + x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
From _Gus Wiseman_, Jan 21 2020: (Start)
The a(1) = 1 through a(8) = 12 unlabeled topologically series-reduced rooted trees with n nodes (empty n = 3 column shown as dot) are:
o (o) . (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)) ((ooo)) ((oooo)) ((ooooo)) ((oooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
((o(oo))) (ooo(oo)) (ooo(ooo))
((o(ooo))) (oooo(oo))
((oo(oo))) ((o(oooo)))
((oo(ooo)))
((ooo(oo)))
(o(oo)(oo))
(oo(o(oo)))
(((oo)(oo)))
((o(o(oo))))
(End)
- D. G. Cantor, personal communication.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155. - _N. J. A. Sloane_, Apr 18 2014
- F. Harary, G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math. 101 (1959) 141-162, W(x,y) equation (9a).
- N. J. A. Sloane, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Series-Reduced Tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Apart from initial term, same as
A059123.
Cf.
A000055 (trees by nodes),
A000014 (homeomorphically irreducible trees by nodes),
A000669 (homeomorphically irreducible planted trees by leaves),
A000081 (rooted trees by nodes).
Matula-Goebel numbers of these trees are given by
A331489.
Lone-child-avoiding rooted trees are counted by
A001678(n + 1).
-
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
G001678 := (convert(gfseries(sys,unlabeled,x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
G001679 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x): A001679 := 0,seq(coeff(G001679,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
# adapted for Maple 16 or higher version by Vaclav Kotesovec, Jun 26 2014
-
terms = 37; (* F = G001678 *) F[] = 0; Do[F[x] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
CoefficientList[G[x], x] (* Jean-François Alcover, Jan 12 2018 *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[Length[Select[urt[n],Length[#]!=2&&FreeQ[Z@@#,{}]&]],{n,15}] (* _Gus Wiseman, Jan 21 2020 *)
-
{a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x)*A - x*(A^2 + subst(A, x, x^2)) / 2, n))};
A007827
Number of homeomorphically irreducible (or series-reduced) trees with n pendant nodes, or continua with n non-cut points, or leaves.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 7, 13, 32, 73, 190, 488, 1350, 3741, 10765, 31311, 92949, 278840, 847511, 2599071, 8044399, 25082609, 78758786, 248803504, 790411028, 2523668997, 8095146289, 26076714609, 84329102797, 273694746208
Offset: 0
Matthew Cropper (mmcrop01(AT)athena.louisville.edu)
- M. Cropper, J. Combin. Math. Combin. Comp., Vol. 24 (1997), 177-184.
- Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, p. 33 (Beware errors!).
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
- S. B. Nadler Jr., Continuum Theory, Academic Press.
Cf.
A000014 (series-reduced trees),
A000055 (trees),
A000311,
A000669 (series-reduced planted trees by leaves),
A059123 (homeomorphically irreducible rooted trees by nodes),
A271205 (series-reduced trees by leaves and nodes).
-
A := series(1+(1+x-B)*B,x,30); # where B = g.f. for A000669; A007827 := n->coeff(A,x,n);
-
(* a9 = A000669 *) max = 29; a9[1] = 1; a9[n_] := (s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2); b[x_] := Sum[a9[n] x^n, {n, 1, max}]; gf[x_] := 1 + (1 + x - b[x])*b[x]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Aug 14 2012 *)
A060313
Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) on n labeled nodes.
Original entry on oeis.org
1, 2, 0, 16, 25, 576, 2989, 51584, 512649, 8927200, 130956001, 2533847328, 48008533885, 1059817074512, 24196291364925, 609350187214336, 16135860325700881, 459434230368302016, 13788624945433889593, 439102289933675933600, 14705223056221892676741
Offset: 1
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches], empty column shown as dot) are:
1 1[2] . 1[2,3,4]
2[1] 1[2[3,4]]
1[3[2,4]]
1[4[2,3]]
2[1,3,4]
2[1[3,4]]
2[3[1,4]]
2[4[1,3]]
3[1,2,4]
3[1[2,4]]
3[2[1,4]]
3[4[1,2]]
4[1,2,3]
4[1[2,3]]
4[2[1,3]]
4[3[1,2]]
(End)
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
The unlabeled unrooted version is
A000014.
The lone-child-avoiding version is
A060356.
-
[1] cat [n*Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Mar 07 2020
-
seq( `if`(n=1, 1, n*(n-2)!*add((-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, k=0..n-2)), n=1..20); # G. C. Greubel, Mar 07 2020
-
f[n_] := If[n < 2, 1, n(n - 2)!Sum[(-1)^k*Binomial[n, k](n - k)^(n - 2 - k)/(n - 2 - k)!, {k, 0, n - 2}]]; Table[ f[n], {n, 19}] (* Robert G. Wilson v, Feb 12 2005 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
Table[Length[Select[lrt[Range[n]],Length[#]!=2&&FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
-
[1]+[n*factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020
A005512
Number of series-reduced labeled trees with n nodes.
Original entry on oeis.org
1, 1, 0, 4, 5, 96, 427, 6448, 56961, 892720, 11905091, 211153944, 3692964145, 75701219608, 1613086090995, 38084386700896, 949168254452993, 25524123909350112, 725717102391257347, 21955114496683796680
Offset: 1
a(6) = 96 because there are two unlabeled series-reduced trees on six vertices, the star and the tree with two vertices of degree three and four leaves; the first of these can be labeled in 6 ways and the second in 90, for a total of 96. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 19 2004
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 188 (3.1.94)
- F. Harary and E. M. Palmer, Graphical Enumeration. New York: Academic Press, 1973. (gives g.f. for unlabeled series-reduced trees)
- R. C. Read, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014)
- D. M. Jackson, Letter to N. J. A. Sloane, May 1975
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Quebec 16 (1992), no 1, 53-80.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- A. Meir and J. W. Moon, On nodes of degree two in random trees, Mathematika 15 1968 188-192.
- R. C. Read, Some Unusual Enumeration Problems, Annals of the New York Academy of Sciences, Vol. 175, 1970, 314-326.
- Eric Weisstein's World of Mathematics, Series-reduced Tree
- Index entries for sequences related to trees
-
[1] cat [Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]
-
A005512 := proc(n)
if n = 1 then
1;
else
add( (-1)^(n-r)*binomial(n,r)*r^(r-2)/(r-2)!,r=2..n) ;
%*(n-2)! ;
end if;
end proc: # R. J. Mathar, Sep 09 2014
-
a[1] = a[2] = 1; a[3] = 0; a[n_] := n!*(n-2)!*Sum[ (-1)^k*(n-k)^(n-k-3) / (k!*(n-k-2)!^2*(n-k-1)), {k, 0, n-2}]; Table[a[n], {n, 1, 20}](* Jean-François Alcover, Feb 16 2012, after given formula *)
u[1, 1] = 1; u[2, 1] = 0; u[2, 2] = 1; u[3, k_] := 0;
u[n_, k_] /; k <= 0 := 0;
u[n_, k_] /; k >= 1 :=
u[n, k] = (n (n - k) u[n - 1, k - 1] + n (n - 1) (n - 3) u[n - 2, k - 1])/k;
Table[Sum[u[n, m], {m, 1, n}], {n, 50}] (* David Callan, Jun 25 2014, fast generation, after R. C. Read link *)
-
a(n) = if(n<=1, n==1, sum(k=0, n-2, (-1)^k*(n-k)^(n-k-2)*binomial(n, k)*(n-2)!/(n-k-2)!)) \\ Andrew Howroyd, Dec 18 2017
-
[1]+[factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020
A331488
Number of unlabeled lone-child-avoiding rooted trees with n vertices and more than two branches (of the root).
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 6, 10, 20, 36, 70, 134, 263, 513, 1022, 2030, 4076, 8203, 16614, 33738, 68833, 140796, 288989, 594621, 1226781, 2536532, 5256303, 10913196, 22700682, 47299699, 98714362, 206323140, 431847121, 905074333, 1899247187, 3990145833, 8392281473
Offset: 1
The a(4) = 1 through a(9) = 10 trees:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo)
(oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo))
(ooo(oo)) (ooo(ooo)) (ooo(oooo))
(oooo(oo)) (oooo(ooo))
(o(oo)(oo)) (ooooo(oo))
(oo(o(oo))) (o(oo)(ooo))
(oo(o(ooo)))
(oo(oo)(oo))
(oo(oo(oo)))
(ooo(o(oo)))
The not necessarily lone-child-avoiding version is
A331233.
The Matula-Goebel numbers of these trees are listed by
A331490.
A000081 counts unlabeled rooted trees.
A001678 counts lone-child-avoiding rooted trees.
A001679 counts topologically series-reduced rooted trees.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A331489 lists Matula-Goebel numbers of series-reduced rooted trees.
Cf.
A000014,
A000669,
A004250,
A007097,
A007821,
A033942,
A060313,
A060356,
A061775,
A109082,
A109129,
A196050,
A276625,
A330943.
-
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[Length[Select[urt[n],Length[#]>2&&FreeQ[#,{_}]&]],{n,10}]
Terminology corrected (lone-child-avoiding, not series-reduced) by
Gus Wiseman, May 10 2021
A034853
Triangle giving number of trees with n >= 3 nodes and diameter d >= 2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 8, 7, 3, 1, 1, 3, 14, 14, 11, 3, 1, 1, 4, 21, 32, 29, 14, 4, 1, 1, 4, 32, 58, 74, 42, 19, 4, 1, 1, 5, 45, 110, 167, 128, 66, 23, 5, 1
Offset: 3
1
1 1
1 1 1
1 2 2 1
1 2 5 2 1
1 3 8 7 3 1
1 3 14 14 11 3 1
1 4 21 32 29 14 4 1
1 4 32 58 74 42 19 4 1
1 5 45 110 167 128 66 23 5 1
1 5 65 187 367 334 219 88 29 5 1
1 6 88 322 755 850 645 328 123 34 6 1
- R. J. Mathar, Table of n, a(n) for n = 3..212 (a(192) corrected by _Sean A. Irvine_, Apr 28 2022)
- B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes.
- B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes. [Cached copy of top page only, pdf file, no active links, with permission]
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Index entries for sequences related to trees
A319376
Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors.
Original entry on oeis.org
1, 1, 1, 2, 6, 4, 5, 30, 51, 26, 12, 146, 474, 576, 236, 33, 719, 3950, 8572, 8060, 2752, 90, 3590, 31464, 108416, 175380, 134136, 39208, 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032, 766, 94648, 1908858, 14047288, 49885320, 95715728, 101799712, 56555904, 12818912
Offset: 1
Triangle begins:
1;
1, 1;
2, 6, 4;
5, 30, 51, 26;
12, 146, 474, 576, 236;
33, 719, 3950, 8572, 8060, 2752;
90, 3590, 31464, 108416, 175380, 134136, 39208;
261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032;
...
From _Gus Wiseman_, Dec 31 2020: (Start)
The 12 trees counted by row n = 3:
(111) (112) (123)
(1(11)) (122) (1(23))
(1(12)) (2(13))
(1(22)) (3(12))
(2(11))
(2(12))
(End)
The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is
A330465.
Lone-child-avoiding rooted trees are counted by
A001678 (shifted left once).
Labeled lone-child-avoiding rooted trees are counted by
A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 18 2018
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1Gus Wiseman, Dec 31 2020 *)
-
\\ here R(n,k) is k-th column of A319254.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}
A331490
Matula-Goebel numbers of series-reduced rooted trees with more than two branches (of the root).
Original entry on oeis.org
8, 16, 28, 32, 56, 64, 76, 98, 112, 128, 152, 172, 196, 212, 224, 256, 266, 304, 343, 344, 392, 424, 428, 448, 512, 524, 532, 602, 608, 652, 686, 688, 722, 742, 784, 848, 856, 896, 908, 931, 1024, 1048, 1052, 1064, 1204, 1216, 1244, 1304, 1372, 1376, 1444
Offset: 1
The sequence of all series-reduced rooted trees with more than two branches together with their Matula-Goebel numbers begins:
8: (ooo)
16: (oooo)
28: (oo(oo))
32: (ooooo)
56: (ooo(oo))
64: (oooooo)
76: (oo(ooo))
98: (o(oo)(oo))
112: (oooo(oo))
128: (ooooooo)
152: (ooo(ooo))
172: (oo(o(oo)))
196: (oo(oo)(oo))
212: (oo(oooo))
224: (ooooo(oo))
256: (oooooooo)
266: (o(oo)(ooo))
304: (oooo(ooo))
343: ((oo)(oo)(oo))
344: (ooo(o(oo)))
These trees are counted by
A331488.
Unlabeled rooted trees are counted by
A000081.
Lone-child-avoiding rooted trees are counted by
A001678.
Topologically series-reduced rooted trees are counted by
A001679.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
Matula-Goebel numbers of series-reduced rooted trees are
A331489.
Cf.
A000014,
A000669,
A004250,
A007097,
A007821,
A033942,
A060313,
A060356,
A061775,
A109082,
A109129,
A196050,
A276625,
A330943.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
Select[Range[1000],PrimeOmega[#]>2&&srQ[#]&]
Showing 1-10 of 23 results.
Comments